KIBERXAVFSIZLIKDA SUN’IY INTELLEKT QO‘LLANILISHI
Andijon Davlat Texnika Instituti, Axborot texnologiyalari kafedra mudiri, PhD, Atajonova Saidaxon Borataliyevna taqrizi ostida
Keywords:
Kiberxavfsizlik, Sun’iy intellekt, Mashinaviy o‘rganish, Chuqur o‘rganish, Kiberhujumlar, Tabiiy tilni qayta ishlash, Tahdidlarni aniqlash, Avtomatlashtirish, Xavfsizlik tizimlari, Real vaqt rejimi.Abstract
Ushbu maqola kiberxavfsizlik sohasida sun’iy intellekt texnologiyalarining qo‘llanilishi va ularning samaradorligini tahlil qiladi. Maqolada mashinaviy o‘rganish, chuqur o‘rganish va tabiiy tilni qayta ishlash kabi sun’iy intellekt yondashuvlari yordamida kiberhujumlarni aniqlash va oldini olishda erishilgan yutuqlar muhokama qilinadi. Tadqiqot natijalari shuni ko‘rsatadiki, sun’iy intellekt asosida ishlovchi tizimlar kiberxavfsizlikni mustahkamlashda yuqori samaradorlikni ta’minlashga yordam beradi. Shuningdek, maqolada sun’iy intellekt tizimlarining ba’zi kamchiliklari va xavf-xatarlar ham tahlil qilinadi, shuningdek, ularni takomillashtirish va xavfsizlikni oshirish zarurligi ko‘rsatilgan. Kelajakda sun’iy intellekt kiberxavfsizlik tizimlarida yanada rivojlanishi va samaradorligini oshirishi kutilmoqda.
References
1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
2.Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
3.Axelsson, S. (2000). The Base-Rate Fallacy and the Difficulty of Intrusion Detection. ACM Transactions on Information and System Security, 3(3), 186-205.
4.Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with Data and Algorithms. O'Reilly Media.
5.Gao, J., Callan, J., & Chang, M. (2021). Deep Learning for Cybersecurity Applications. Springer.
6.Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014). Predicting phishing websites based on self-structuring neural network. Neural Computing and Applications, 25(2), 443–458.
7.Chakraborty, S., Alam, S., & Mohammed, N. (2022). Artificial Intelligence and Machine Learning in Cybersecurity. CRC Press.
8.Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2019). Applying Deep Learning for Network Intrusion Detection. Future Generation Computer Systems, 87, 416-427.
9.Mazurowski, M. A., Habas, P. A., Goehler, A., et al. (2019). Deep learning in cybersecurity: Applications and challenges. IEEE Transactions on Cybernetics, 49(6), 2045-2059.
NIST (National Institute of Standards and Technology). (2020). Cybersecurity Framework Version 1.1. Retrieved from https://www.nist.gov/cyberframework.