“SUNʼIY INTELLEKT TIZIMLARIDA QAYTA TIKLASHGA ASOSLANGAN OʻQITISH”
Keywords:
qayta tiklashga asoslangan oʻqitish, sunʼiy intellekt, mustaqil oʻrganish, Reinforcement Learning, tibbiyot, moliya, katta maʼlumotlar, oʻz-oʻzini yangilash, moslashuvchanlik, optimallashtirish, algoritmlar, texnologiya, kompyuter lingvistikasi, hisoblash texnologiyalari, avtomatlashtirishAbstract
Qayta tiklashga asoslangan oʻqitish (Reinforcement Learning) sunʼiy intellekt tizimlarining mustaqil oʻrganish va oʻz-oʻzini yangilash imkoniyatlarini kengaytiradi. Ushbu maqolada qayta tiklashga asoslangan oʻqitishning nazariy asoslari, tadqiqot usullari va natijalari bayon etiladi. Natijalar qayta tiklashga asoslangan oʻqitishning sunʼiy intellekt tizimlarini optimallashtirish va turli vaziyatlarga moslashishida samarali ekanligini koʻrsatadi. Bunday yondashuv tibbiyot, moliya va katta maʼlumotlar bilan ishlash kabi sohalarda yuqori samaradorlikni taʼminlaydi va kelajakda sunʼiy intellekt tizimlarining yanada rivojlanishiga xizmat qiladi.
References
1.Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
2.Silver, D., Huang, A., & et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.
3.Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
4.Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
5.Lillicrap, T. P., Hunt, J. J., Pritzel, A., et al. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
6.Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.
7.Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334-1373.
8.Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253.
9.Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438.
10.Lillicrap, T. P., & et al. (2016). Continuous control with deep reinforcement learning. International Conference on Learning Representations.
11.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(2), 156-172.
12.Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.
13.Francois-Lavet, V., Henderson, P., Islam, R., et al. (2018). An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4), 219-354.
14.Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.
15.Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238-1274.