MECHANISM OF CALCIUM HOMEOSTASIS AND ITS ROLE IN NEURODEGENERATIVE PROCESSES
Keywords:
Calcium (Ca²⁺), calcium channels, calcium transport, NMDA receptors, polyphenols.Abstract
Calcium (Ca²⁺) plays a key role in regulating neuronal activity, plasticity, and cell survival in the brain. Its transport across the membrane occurs through voltage-gated calcium channels, ionotropic and metabotropic receptors, calcium pumps, and exchangers. Disruptions in calcium homeostasis are associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Bioactive compounds, including polyphenols, can modulate calcium transport, exerting neuroprotective effects. Studying these mechanisms opens new perspectives for developing therapeutic strategies.
References
1.Features of Calcium Regulation of Mediator Secretion Kinetics in Neuromuscular Synapses of Cold-Blooded and Warm-Blooded Animals" / A. N. Tsentsevitsky, V. F. Khuzakhmetova, A. L. Vasin [et al.] // Biological Membranes. – 2015. – Т. 32, № 5-6. – С. 310. – DOI 10.7868/S0233475515050187. – EDN UVEVUD.
2.Nikitin, E. S., Balaban, P. M. Diversity and Functional Features of Calcium-Dependent Potassium Channels Determining Their Role in Neuronal Plasticity of the Brain // Journal of Higher Nervous Activity named after I. P. Pavlov.– 2021. – Т. 71, № 2. – С. 237-243. – DOI 10.31857/S0044467721020088. – EDN HBUVWL.
3. Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F., & Di Luca, M. (1998). Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of neurochemistry, 71(4), 1733–1741. https://doi.org/10.1046/j.1471-4159.1998.71041733.x
4.Bezprozvanny, I. B. The Calcium Signaling System in Neurodegeneration. // Acta Naturae. 2010. №1. URL: https://cyberleninka.ru/article/n/sistema-kaltsievoy-signalizatsii-pri-neyrodegeneratsii.
5. Sheng, M., Thompson, M. A., & Greenberg, M. E. (1991). CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science (New York, N.Y.), 252(5011), 1427–1430. https://doi.org/10.1126/science.1646483+
6.Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., & Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends in neurosciences, 11(10), 431–438. https://doi.org/10.1016/0166-2236(88)90194-4
7.Каспер Б. Хансен , Фэн Йи , Райли Э. Першик , Хиро Фурукава , Лонни П. Уоллмут , Аласдер Дж. Гибб , Стивен Ф. Трейнелис; Структура, функции и аллостерическая модуляция рецепторов NMDA. J Gen Physiol 6 августа 2018 г.; 150 (8): 1081–1105. дои: https://doi.org/10.1085/jgp.201812032
8.Тихонов, Д. Б. Каналоблокаторы ионотропных рецепторов глутамата / Д. Б. Тихонов // Российский физиологический журнал им. И.М. Сеченова. – 2021. – Т. 107, № 4-5. – С. 403-416. – DOI 10.31857/S0869813921040142. – EDN XCSSYU.
9.James E Huettner, Kainate receptors and synaptic transmission, Progress in Neurobiology, Volume 70, Issue 5, 2003, Pages 387-407, ISSN 0301-0082, https://doi.org/10.1016/S0301-0082(03)00122-9.
10. Smolyaninova, L. V., Shiyan, A. A., Maksimov, G. V., Orlov, S. N. Contribution of Monovalent (Na+ and K+) and Divalent (Ca2+) Ions to the Mechanisms of Synaptic Plasticity // Biological Membranes. – 2020. – Т. 37, № 6. – С. 403-425. – DOI 10.31857/S0233475520060067. – EDN YBXCAA.
11. Leonard, R. G., & Talbert, R. L. (1982). Calcium-channel blocking agents. Clinical pharmacy, 1(1), 17–33.
12. Langham, J., Goldfrad, C., Teasdale, G., Shaw, D., & Rowan, K. (2003). Calcium channel blockers for acute traumatic brain injury. The Cochrane database of systematic reviews, (4), CD000565. https://doi.org/10.1002/14651858.CD000565
13. Li, W., & Shi, G. (2019). How CaV1.2-bound verapamil blocks Ca2+ influx into cardiomyocyte: Atomic level views. Pharmacological research, 139, 153–157. https://doi.org/10.1016/j.phrs.2018.11.017
14. Khaziev E.F., Balashova D.V., Tsentsevitsky A.N., Bukharaeva E.A., Samigullin D.V. Calcium Transient and Mediator Release in Different Parts of the Frog Nerve Ending on the Change of Conditions of Calcium Ions Entry. Russian Journal of Physiology. 105(10): 1262–1270. DOI: 10.1134/S0869813919100030
15. Dergachev V.D., Yakovleva E.E., Bychkov E.R., Piotrovskiy L.B., Shabanov P.D. Role of glutamate receptor complex in the organism. Ligands of NMDA receptors in neurodegenerative processes – a modern state of the problem // Reviews on Clinical Pharmacology and Drug Therapy. - 2022. - Vol. 20. - N. 1. - P. 17-28. doi: 10.17816/RCF20117-28
16. Watanabe C. M. H., Wolffram S., Ader P., Rimbach G., Packer L., Maguire J. J., Schultz P. G., and Gohil K., The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba, Proceedings of the National Academy of Sciences of the United States of America. (2001) 98, no. 12, 6577–6580, 2-s2.0-0035811001, https://doi.org/10.1073/pnas.111126298
17.Quincozes-Santos, A., Bobermin, L. D., Tramontina, A. C., Wartchow, K. M., Tagliari, B., Souza, D. O., Wyse, A. T., & Gonçalves, C. A. (2014). Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: neuroprotective effect of resveratrol. Toxicology in vitro : an international journal published in association with BIBRA, 28(4), 544–551. https://doi.org/10.1016/j.tiv.2013.12.021
18.Numonjonovich, K. N. ., Baxtiyarovich, K. I. ., Ugli, D. J. I. ., Salimovich, K. S. ., Ugli, M. A. A. ., Ugli, O. M. M. ., Erkinovich, N. K. ., Amindjanovna, M. Z. ., Abdullayevna, S. G. ., & Nurillayevich, R. R. . (2024). Еffесt of Pоlyphеnоls on Сhаngеs in thе Hеmоstаtiс Systеm of Blооd Plаsmа in Hеаlthy and Mоdеl Rаts with Аlzhеimеr’s Disеаsе. Trends in Sciences, 21(9), 8081. https://doi.org/10.48048/tis.2024.8081
19.Nozim N. Khoshimov, Alisher A. Mukhtorov, Kabil E. Nasirov, Rakhmatilla N. R;akhimov, Rahmatjon R. Mamadaminov. Effects of Polyphenols on changes in the transport of Ca2+ NMDA-receptors under the influence of L-glutamate. Research Journal of Pharmacy and Technology 2023; 16(3):1205-3. doi: 10.52711/0974-360X.2023.00200
20. Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber Officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621.
21.Lee, G.H.; Peng, C.; Jeong, S.Y.; Park, S.A.; Lee, H.Y.; Hoang, T.H.; Kim, J.; Chae, H.J. Ginger Extract Controls MTOR-SREBP1-ER Stress-Mitochondria Dysfunction through AMPK Activation in Obesity Model. J. Funct. Foods 2021, 87, 1–9.
22.Namekata, I.; Hamaguchi, S.; Wakasugi, Y.; Ohhara, M.; Hirota, Y.; Tanaka, H. Ellagic Acid and Gingerol, Activators of the Sarco-Endoplasmic Reticulum Ca2+-ATPase, Ameliorate Diabetes Mellitus-Induced Diastolic Dysfunction in Isolated Murine Ventricular Myocardia. Eur. J. Pharmacol. 2013, 706, 48–55.
23.Viskupicova, J., & Rezbarikova, P. (2022). Natural Polyphenols as SERCA Activators: Role in the Endoplasmic Reticulum Stress-Related Diseases. Molecules (Basel, Switzerland), 27(16), 5095. https://doi.org/10.3390/molecules27165095
24.Zündorf, G., & Reiser, G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & redox signaling, 2011,14(7), 1275–1288