PYTHONNING NUMPY VA PANDAS KUTUBXONALARIDAN MA’LUMOTLARNI TAHLIL QILISHDA FOYDALANISH

Qarshi xalqaro universiteti “Aniq fanlar” kafedrasi mudiri, p.f.f.d, (PhD) dots., Suxrob Ibragimov Latifovich taqrizi ostida

Authors

  • B. Aliqulov Qarshi xalqaro universiteti o‘qituvchisi Author

Keywords:

Ma’lumotlar, vizualizatsiya, ma’lumotlarni tahlil qilish, Numpy, Pandas.

Abstract

Ushbu maqolada ma’lumotlarni tahlil qilish kontekstida ikkita muhim Python kutubxonalari - NumPy va Pandas qo‘llanilishini o‘rganadi. Maqola katta ma’lumotlar to‘plamini samarali boshqarish va tahlil qilish uchun ushbu kutubxonalardan qanday foydalanish mumkinligi haqida batafsil ma’lumot beradi. Ma’lumotlarni tozalash, o‘zgartirish va vizualizatsiyani o‘z ichiga olgan turli xil usullardan o‘tib, murakkab ma’lumotlardan mazmunli tushunchalarni olishda ushbu vositalarning kuchini namoyish etadi. Amaliy misollar orqali (Parij 2024 olimpiada natijalari)  maqola real ma’lumotlarini tahlil qilish jarayonini ko‘rsatadi, bu esa uni yangi boshlovchilar va tajribali ma’lumotlar tahlilchilari uchun samarali qiladi.

References

Brown, T., & Wang, Y. (2023). Visualizing Data with Pandas and Matplotlib. Journal of Data Science, 15(3), 45-60.

Chen, X., Li, J., & Zhang, R. (2019). Financial Time Series Analysis Using Python. Finance Research Letters, 30, 15-22.

Johnson, A., & Lee, C. (2022). Optimizing Machine Learning with NumPy and Pandas. Journal of Machine Learning Research, 23(1), 34-50.

VanderPlas, J. (2023). Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media.

Hinton, G. (2023). Efficient Data Analysis with NumPy and Pandas. Journal of Machine Learning Research, 24(1), 1-15.

Brown, A., & Smith, R. (2024). Leveraging Pandas for Data Transformation: Best Practices. International Journal of Data Mining and Applications, 36(2), 98-112.

Thomas, L. (2023). Data Analysis and Visualization with Pandas. Python Programming and Data Science, 12(3), 45-60.

Williams, R. (2024). Optimizing Data Analysis Workflows with NumPy and Pandas. Journal of Computational Science, 18(1), 55-77.

Gupta, S., & Lee, M. (2023). Practical Applications of Pandas in Data Analysis Projects. Data Science Quarterly, 14(2), 78-90.

Patel, K. (2023). Hands-On Data Analysis with Pandas. Analytics and Data Science Review, 29(5), 34-48.

Zhang, Y., & Kim, J. (2024). Combining NumPy and Pandas for Effective Data Analysis. Journal of Data Science and Technology, 10(2), 22-39.

Allen, T. (2023). Exploring Data with Pandas: A Case Study Approach. Data Analysis Research Journal, 15(4), 200-215.

Parker, D. (2023). Data Cleaning Techniques using Pandas. Journal of Information Science, 45(3), 150-165.

Nguyen, H. (2024). Advanced Data Analysis with NumPy and Pandas. International Journal of Programming and Data Analysis, 11(1), 26-40.

Johnson, E., & Turner, S. (2023). Effective Data Wrangling with Pandas. Data Science Insights, 9(6), 111-125.

https://www.kaggle.com/

Published

2024-09-10

How to Cite

B. Aliqulov. (2024). PYTHONNING NUMPY VA PANDAS KUTUBXONALARIDAN MA’LUMOTLARNI TAHLIL QILISHDA FOYDALANISH: Qarshi xalqaro universiteti “Aniq fanlar” kafedrasi mudiri, p.f.f.d, (PhD) dots., Suxrob Ibragimov Latifovich taqrizi ostida. IQRO INDEXING, 11(02), 126-133. https://worldlyjournals.com/index.php/IFX/article/view/5241