ODDIY DIFFERENSIAL TENGLAMALARGA DOIR IQTISODIY MASALALAR

Authors

  • Latipova Shahnoza Salim qizi Osiyo Xalqaro Universiteti “Umumtexnik fanlar” kafedrasi o’qituvchisi Author

Keywords:

Differensial tenglama * Differensial tenglama tartibi * Differensial tenglama yechimi * Boshlang‘ich shart * Koshi masalasi * Koshi teoremasi * Umumiy yechim * Umumiy integral * Xususiy yechim * Eng sodda I tartibli differensial tenglama * O‘zgaruvchilari ajralgan tenglama * O‘zgaruvchilari ajraladigan tenglama * Bir jinsli I tartibli tenglama * To‘liq differensialli tenglama * I tartibli chiziqli differensial tenglama * I tartibli chiziqli bir jinsli differensial tenglama

Abstract

Noma’lum funksiyaning hosilalari qatnashgan tenglama differensial tenglama deb ataladi. Differensial tenglamalardan fizika, iqtisodiyot, kimyo, mexanika va boshqa fanlarga doir juda ko‘p masalalarni yechishda keng qo‘llaniladi. Vaqt bilan bog‘liq turli texnologik va iqtisodiy jarayonlar ham matematik usulda differensial tenglamalar orqali tavsiflanadi. Differensial tenglama tartibi unda qatnashgan noma’lum funksiya hosilasining eng katta tartibi bilan aniqlanadi. Differensial tenglamalar yechimining mavjudlik sharti Koshi teoremasi orqali ifodalanadi. Differensial tenglamalar yechimini topish jarayoni uni integrallash deyiladi. Differensial tenglamani integrallashning umumiy usuli mavjud emas. Bundan tashqari juda ko‘p differensial tenglamalarning yechimi elementar funksiyalarda ifodalanmaydi. Shu sababli differensial tenglamalarning ayrim xususiy hollari uchun ularni integrallash usulini ko‘rsatish mumkin. Bu yerda nisbatan soddaroq bo‘lgan I tartibli differensial tenglamalar qaralib, ulardan o‘zgaruvchilari ajralgan, o‘zgaruvchilari ajraladigan, bir jinsli, to‘liq differensialli, chiziqli tenglamalarni va Bernulli tenglamasini integrallash usuli ko‘rsatilgan. Bu tenglamalarni demografiya, marketing va iqtisodiyot masalalarini yechishga tatbiqlari keltirilgan.

References

1.Latipova, S. (2024). YUQORI SINF GEOMETRIYA MAVZUSINI O’QITISHDA YANGI PEDAGOGIK TEXNOLOGIYALAR VA METODLAR. SINKVEYN METODI, VENN DIAGRAMMASI METODLARI HAQIDA. Theoretical aspects in the formation of pedagogical sciences, 3(3), 165-173.

2.Latipova, S. (2024, February). SAVOL-JAVOB METODI, BURCHAKLAR METODI, DEBAT (BAHS) METODLARI YORDAMIDA GEOMETRIYANI O’RGANISH. In Международная конференция академических наук (Vol. 3, No. 2, pp. 25-33).

3.Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.

4.Latipova, S. (2024). 10-11 SINFLARDA STEREOMETRIYA OQITISHNING ILMIY VA NAZARIY ASOSLARI. Академические исследования в современной науке, 3(6), 27-35.

5.Latipova, S. (2024). HILFER HOSILASI VA UNI HISOBLASH USULLARI. Центральноазиатский журнал образования и инноваций, 3(2), 122-130.

6.Latipova, S. (2024). HILFER MA’NOSIDA KASR TARTIBLI TENGLAMALAR UCHUN KOSHI MASALASI. Development and innovations in science, 3(2), 58-70.

7.Latipova, S. (2024). KESIK PIRAMIDA TUSHUNCHASI. KESIK PIRAMIDANING YON SIRTINI TOPISH FORMULALARI. Models and methods in modern science, 3(2), 58-71.

8.Shahnoza, L. (2023, March). KASR TARTIBLI TENGLAMALARDA MANBA VA BOSHLANG’ICH FUNKSIYANI ANIQLASH BO’YICHA TESKARI MASALALAR. In " Conference on Universal Science Research 2023" (Vol. 1, No. 3, pp. 8-10).

9.qizi Latipova, S. S. (2024). CAPUTO MA’NOSIDAGI KASR TARTIBLI TENGLAMALARDA MANBA FUNKSIYANI ANIQLASH BO ‘YICHA TO ‘G ‘RI MASALALAR. GOLDEN BRAIN, 2(1), 375-382.

10.Latipova, S. S. (2023). SOLVING THE INVERSE PROBLEM OF FINDING THE SOURCE FUNCTION IN FRACTIONAL ORDER EQUATIONS. Modern Scientific Research International Scientific Journal, 1(10), 13-23.

11.Latipova, S. (2024). GEOMETRIYADA EKSTREMAL MASALALAR. В DEVELOPMENT OF PEDAGOGICAL TECHNOLOGIES IN MODERN SCIENCES (Т. 3, Выпуск 3, сс. 163–172).

12.Latipova, S. (2024). EKSTREMUMNING ZARURIY SHARTI. В SOLUTION OF SOCIAL PROBLEMS IN MANAGEMENT AND ECONOMY (Т. 3, Выпуск 2, сс. 79–90).

13.Latipova, S. (2024). FUNKSIYANING KESMADAGI ENG KATTA VA ENG KICHIK QIYMATI. В CURRENT APPROACHES AND NEW RESEARCH IN MODERN SCIENCES (Т. 3, Выпуск 2, сс. 120–129).

14.Latipova, S. (2024). EKSTREMUMLARNING YUQORI TARTIBLI HOSILA YORDAMIDA TEKSHIRILISHI. IKKINCHI TARTIBLI HOSILA YORDAMIDA EKSTREMUMGA TEKSHIRISH. В SCIENCE AND INNOVATION IN THE EDUCATION SYSTEM (Т. 3, Выпуск 3, сс. 122–133).

15.Latipova, S. (2024). BIR NECHA O'ZGARUVCHILI FUNKSIYANING EKSTREMUMLARI. В THEORETICAL ASPECTS IN THE FORMATION OF PEDAGOGICAL SCIENCES (Т. 3, Выпуск 4, сс. 14–24).

16.Latipova, S. (2024). SHARTLI EKSTREMUM. В МЕЖДУРОДНАЯ КОНФЕРЕНЦИЯ АКАДЕМИЧЕСКИХ НАУК (Т. 3, Выпуск 2, сс. 61–70).

17.Latipova, S. (2024). KASR TARTIBLI HOSILALARGA BO'LGAN ILK QARASHLAR. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 46–51).

18.Latipova, S. (2024). TURLI EKSTREMAL MASALALAR. BAZI QADIMIY EKSTREMAL MASALALAR. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 52–57).

19.Latipova, S. (2024). FUNKSIYA GRAFIGINI YASASHDA EKSTREMUMNING QO'LLANILISHI. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 58–65).

Published

2024-12-09