ILM FAN YANGILIKLARI KONFERENSIYASI

30-AVGUST ANDIJON,2024
THINKING ABOUT COMPUTATIONAL THINKING

J.M.Mastonov
Karshi city 10" school’s Information technology teacher
mastonoviahongir@gmail.com

ABSTRACT:Jeannette Wing’s call for teaching Computational Thinking (CT) as a formative
skill on par with reading, writing, and arithmetic places computer science in the category of
basic knowledge. Just as proficiency in basic language arts helps us to effectively communicate
and in basic math helps us to successfully quantitate, proficiency in computational thinking
helps us to systematically and efficiently process information and tasks. But while teaching
everyone to think computationally is a noble goal, there are pedagogical challenges. Perhaps
the most confounding issue is the role of programming, and whether we can separate it from
teaching basic computer science.

I think that to successfully broaden participation in computer science(CS), efforts must be
made to lay the foundations of CT long before students experience their first programming
language. I posit that programming is to Computer Science what proof construction is to
mathematics, and what literary analysis is to English. Hence by analogy, programming should
be the entrance into higher CS, and not the student’s first encounter in CS. We argue that in
the absence of programming, teaching CT should focus on establishing vocabularies and
symbols that can be used to annotate and describe computation and abstraction, suggest
information and execution, and provide notation around which mental models of processes can
be built. Lastly, we conjecture that students with sustained exposure to CT in their formative
education will be better prepared for programming and the CS curriculum, and, furthermore,
that they might choose to major in CS not only for career opportunities, but also for its
intellectual content.

Keywords: IT, computer, computer science, computational thinking, computer-like thinking,
computational-informatic thinking

INTRODUCTION

Since the dot-com bubble, the conundrum we face in computer science is how such a useful
discipline can have such difficulties attracting students, despite continuing growth of the IT
industry. We blame student disinterest on career instability, but similar and even stronger
arguments have long existed for other disciplines with little impact on enrollment. Recent data
from the National Center for Education Statistics show that computer and information sciences
conferred fewer degrees than either the visual and performing arts or the social sciences and
history — hardly the stuff that ironclad career guarantees are made of. Not surprisingly, the
number of students majoring in CS lags far behind those majoring in other practically-
perceived disciplines such as education or business. Through the years, despite our best efforts
to articulate that CS is more than “just programming,” the misconception that the two are
equivalent remains.

PROGRAMMING: DESCRIBING COMPUTATIONAL PROCESSES

For those students interested in pursuing higher-level English and mathematics, there exist
milestone courses to help shift the focus from the development of useful skills to the academic
study of these subjects. In English, courses in literary analysis pave the way for students to
read texts critically and to argue theoretically. In mathematics, a course on proof

58

i~ 4

mailto:mastonovjahongir@gmail.com

ILM FAN YANGILIKLARI KONFERENSIYASI

30-AVGUST ANDIJON,2024
understanding and construction is the gateway into higher mathematics. These courses make
critical intellectual leaps. And while being educated implies proficiency in basic reading,
writing, and quantitative skills, it does not imply knowledge of or the ability to understand and
carry out scholarly English and mathematics. Analogously, we believe the same dichotomy
exists between computational thinking, as a skill, and computer science as an academic subject.
Our thesis is this.

“Programming is to CS what proof construction is to mathematics and what literary
analysis is to English.”

Example (Introduction to Multiplication).

Current curricula introduce multiplication in Grade 3. Two common concepts are
“multiplication is repeated addition” and“the result of multiplication is the same no matter
which number you write first.”

The use of repeated addition as a definition for multiplication is an opportunity to introduce
two computational concepts: iteration and efficiency. We may explain that each application of
the symbol + is an iteration, and that while the operation is commutative, the efficiency of the
two forms of expression may be different. Some useful exercises may be the following.

1. For each multiplication, write it as repeated additionand then the answer. Also write down
the number of iterations that are required.

2. Write the multiplication by switching the two numbers, and compare the number of
iterations required. Which one is more efficient?

Example
expression | numbers | which is more efficient?
switched
3x6 6x3 6x3 needs 3 iterations,
3 x 6 needs 6, so 6 x 3 is more efficient.
DISCUSSION

Through practice and repeated encounters, thinking and communicating in the CTL will
become second nature by the time students reach their final year in high school. A
culminating AP course or equivalent introductory college courses, such as the excellent
“Great Theoretical Ideas In Computer Science” by Steven Rudich and colleagues at CMU,
will help to integrate students’ experiences and prepare them for exposure to programming.
Such courses may formally address computational properties, such as convergence,
efficiency and limits of computation, again without necessarily referring to a specific
computing agent. College-level service courses may be offered on domain-specific
computational thinking (e.g., bioinformatics, chemical informatics).

To truly integrate computational thinking into current primary and secondary curricula
undoubtably presents significant challenges. It will necessarily be a gradual and evolutionary
process, and requires concerted efforts and coordination among many constituents of the
wider education community. We see concrete efforts towards achieving broader CT literacy
as some of the most exciting, challenging, and necessary next steps in the maturation of our
discipline.

REFERENCES:
1. J. M. Wing. Computational thinking. CACM 49(3):33-35, 2006.

59

ILM FAN YANGILIKLARI KONFERENSIYASI

30-AVGUST ANDIJON,2024

2. A. Cohen and B. Haberman. Computer science: a language of technology. SIGCSE
inroads 39(4):65-69, 2007.

3. P. J. Denning and A. McGettrick. Recentering computer science. CACM 48(11):15-19,
2005.

4. www.digitalpromise.org

5. www.unite.ai

60

http://www.digitalpromise.org
http://www.unite.ai

