ДИНАМИЧЕСКЫЕ СИЛЫ ГРУЖЕННЫХ ОРТОТРОПНЫЕ ЦИЛИНДРИЧЕСКИЕ ОБОЛОЧКИ

Эсанов Нуриддин Қурбонович, Алфраганус университети, esanovnuriddin063@gmail.com Халилов Шахобиддин Файзиевич, Ренессанс таълим университети, shaxobiddin_77@gmail.com Қурбонова Дилнора Нуриддин қизи БухДУ 2-курс талабаси

Аннатоция

В данной статье рассматривается динамическая реакция ортотропной цилиндрической оболочки, трубы, закрыты под землю и подвергнуты воздействию. Толстостенная сейсмическому модель трубы включая деформацию сдвига и инерцию вращения. Предполагается, что оболочка быть совершенно связанным с окружающей средой (почвой) бесконечной только осесимметричный протяженности. Исследовался отклик на ортотропия падающую волну сжатия. Эффекты оболочки ee на характеристиках была проиллюстрирована отклика изменением безразмерные параметры ортотропии оболочки в широком диапазоне. Результаты были получены для разных почвенных условий – твердых (каменистых), средних и мягких. Установлено, что параметры ортотропии не влияют на реакцию оболочки. Даже степень их влияние сильно зависит от жесткости окружающего грунта.

Ключевые слова: деформация, инерция, безразмерные параметры, грунт, изотроп, однородные, чугун, сталь, цилиндрические оболочки, продольная волна, композитная труба.

введение

Подземные трубопроводы играют жизненно важную роль в проведении и/ или распределение энергии, воды, связи и транспорта в современном мире. Однако почти до 1970-х годов, подземные инженерные коммуникации и транспортные системы оставались несколько забытыми в отношении к учету воздействия на них землетрясений. И только после сообщения о тяжелом повреждения подземных газопроводов, водопроводов И других трубопроводов в результате некоторых недавних землетрясений, что исследователи осознали важность изучения их динамической реакции. В течение последних семи за восемь лет появился ряд статей, посвященных различным аспектам проблема. Большинство опубликованных работ по динамическим характеристикам подземных трубопроводов были связаны либо с оценкой роли и развития параметров почвы или предложение лучших аналитических моделей для трубы или окружающего грунта. Хороший аккаунт с этими работами можно ознакомиться в обзорных статьях [1-4].

Стремясь предложить лучшую модель и объяснить природу поломок труб, Ариман и другие. [2,5] рассматривали трубу как заглубленную оболочку, используя теорию оболочек Флюгге. Они пришли к выводу что балочная модель трубы, использовавшаяся рядом исследователей [6-8], не может спрогнозировать потери устойчивости труб, которые являются наиболее частой причиной разрушения при сейсмической нагрузке.

При постановке задачи применялся подход, аналогичный подходу из работы [6], при котором силы тяги в уравнениях динамики вложенной оболочки полностью выражаются через перемещения падающего и рассеянного полей в окружающей бесконечной среде.

ОСНОВНЫЕ УРАВНЕНИЯ И ФОРМУЛИРОВКА

Рассмотрим бесконечно длинную толстую ортотропную цилиндрическую оболочку среднего радиуса R и толщины h, лежащую в линейно-упругой, однородной и изотропной бесконечной среде. Оболочка возбуждается продольной волной с длиной волны $A(=2\pi/\xi)$ и скоростью *с* движущейся вдоль оси оболочки в среде. Пусть задана цилиндрически-полярная система координат (r, θ, x) такая, что *x* совпадает с осью оболочки. Соотношения между напряжением и деформацией материала оболочки предполагаются равными быть в форме

 $\sigma_{xx} = E_{x1}\varepsilon_{xx} + E_{\nu 1}\varepsilon_{00}, \sigma_{\theta\theta} = E_{\nu 1}\varepsilon_{xx} + E_{01}\varepsilon_{00}, \sigma_{xr} = G_{x1}2\varepsilon_{xr}$ (1)

где σ_{ij} и ε_{ij} - соответственно компоненты напряжения и деформации, а $E_{x1}, E_{\theta 1}$ и E_{v1}, G_{x1} - четыре независимых модуля. Уравнения, описывающие осесимметричное движение такой оболочки, можно записать с некоторые модификации, из ссылки [13] как,

$$\begin{bmatrix} -\frac{1}{R^2} \left(E_0 + \frac{D_0}{R^2} \right) + G_x \frac{\partial^2}{\partial x^2} - \rho \left(\frac{\partial^2}{\partial t^2} \right) w + \begin{bmatrix} G_x \frac{\partial}{\partial x} \end{bmatrix} \psi_x - \begin{bmatrix} \frac{E_v}{R} \frac{\partial}{\partial x} \end{bmatrix} u + p_1^* = 0 \quad (2)$$

$$\begin{bmatrix} -G_x \frac{\partial}{\partial x} \end{bmatrix} w + \begin{bmatrix} D_x \frac{\partial^2}{\partial x^2} - G_x - I \left(\frac{\partial^2}{\partial t^2} \right) \psi_x + \begin{bmatrix} \frac{D_x}{R} \frac{\partial^2}{\partial x^2} - \frac{I}{R} \frac{\partial^2}{\partial t^2} \end{bmatrix} u + p_2^* = 0 \quad (3)$$

$$\left[\frac{E_{v}}{R}\frac{\partial}{\partial x}\right]w + \left[\frac{D_{x}}{R}\frac{\partial^{2}}{\partial x^{2}} - \frac{I}{R}\frac{\partial^{2}}{\partial t^{2}}\right]\psi_{x} + \left[E_{x}\frac{\partial^{2}}{\partial x^{2}} - \rho'\frac{\partial^{2}}{\partial t^{2}}\right]u + p_{3}^{*} = 0$$
(4)

где t – время, *и* u и ω компоненты перемещения срединной поверхности в осевом и радиальном направлениях соответственно, ψ_x — угол поворота в осевом направление прямой линии, которая изначально перпендикулярна средней поверхности.

Параметры жесткости и другие константы в уравнениях (2)-(4) задаются следующим виды:

$$E_{x} = hE_{x1}, D_{x} = IE_{x1}, E_{0} = hE_{01}, E_{v} = hE_{v1}, D_{0} = IE_{0},$$

$$G_{x} = k^{2}G_{x1}h, \rho' = h\rho_{0}, I' = \rho_{0}I, I = \frac{h^{3}}{12},$$
(5)

где k —коэффициент сдвига, принятый как $\pi/\sqrt{12}$, а ρ_0 -массовая плотность материал оболочки. ρ_i^* -компоненты тяги на единицу площади, действующие на оболочку со стороны окружающей средой, и определяются по следующим формулам:

$$\rho_1^* = \left(1 + \frac{h}{2R}\right)\sigma_{rr}^*, \rho_2^* = \left(\frac{h}{2}\right)\rho_3^*, \rho_3^* = (1 + \frac{h}{2R})\sigma_{rx}^*,$$

где σ_{rr}^* и σ_{rx}^* -соответственно нормальное и касательное напряжения, возникающие при внешней поверхности оболочки (т. е. при $r = R + \frac{h}{2}$) за счет движения окружающей среды. Перемещение $d(r, \theta, x, t)$ в любой точке окружающей среды удовлетворяет условию уравнение движения

$$c_1^2 \nabla (\nabla d) - c_2^2 \nabla \times \nabla \times d = \partial^2 \frac{d}{dt^2}, \tag{7}$$

где $c_1 = \left\{ \begin{pmatrix} \lambda + 2\mu \end{pmatrix} / \rho_m \right\}^{\frac{1}{2}}$ и $c_2 = \sqrt{\mu / \rho_m}$ - соответственно продольная и скорости

поперечной волны в зависимости от значений констант Ламе λ и μ а также плотность ρ_m , среды (окружающий грунт).

Поскольку в среде лежит оболочка, перемещение d в любой точке в среде состоит из двух частей: падающего поля d^i , созданного за счет продольного волна, движущаяся по оболочке, и рассеянное поле d^s .

Для осесимметричного движения радиальная и осевая составляющие *d*^{*i*} и *d*^{*s*} равны:

$$d_{r}^{(i)} = d_{0}\overline{c_{1}}I_{1}\left(\begin{array}{c} \overline{c_{1}}r \\ R \end{array}\right)e^{i\xi(x-ct)}, d_{x}^{(i)} = id_{0}R\xi I_{0}\left(\begin{array}{c} \overline{c_{1}}r \\ R \end{array}\right)e^{i\xi(x-ct)},$$
(8)

где *d*₀ - константа, зависящая от интенсивности падающей волны и имеющая размерность длины и

$$d_{r}^{s} = \left[A\left(\overline{c_{1}}/R\right)K_{1}\left(\overline{c_{1}}r/R\right) + i\xi BK_{1}\left(\overline{c_{2}}r/R\right)\right]e^{i\xi(x-ct)},$$

$$d_{x}^{s} = \left[Ai\xi K_{0}\left(\overline{c_{1}}r/R\right) + B\left(\overline{c_{2}}/R\right)K_{0}\left(\overline{c_{2}}r/R\right)\right]e^{i\xi(x-ct)},$$
(9)

где I_n и K_n (n = 0, 1) — модифицированные функции Бесселя первого и второго вид соответственно и

$$\overline{c_1} = \beta \sqrt{1 - \left(\frac{c}{c_1}\right)^2}, \overline{c_2} = \beta \sqrt{1 - \left(\frac{c}{c_2}\right)^2}, \beta = \xi R = 2\pi \frac{R}{A}$$
(10)

Когда аргументы I_n и K_n мнимые (при $c/c_1 > 1.0$), эти функции становятся соответственно J_n и Y_n можно, конечно, иначе выразить через функции Ханкеля.

Можно отметить, что $d^{(i)}$ определяемая уравнениями (8), удовлетворяет уравнению (7) и представляет собой бегущую волну с длиной волны $A = \frac{2\pi}{\xi}$, движущуюся вдоль оси трубы со скоростью $c = \frac{\omega}{\xi}$. случае плоской продольной волны, движущейся под углом Φ с осью оболочки, уравнения (8) будут представлять осесимметричные компоненты этой волны, а кажущаяся скорость такой волны вдоль оси оболочки будет ($\frac{c_1}{\cos \phi}$).

Константы А и В в уравнениях (9) определяются с применением условия непрерывность перемещений на внешней поверхности оболочки:

(6)

т.е.,

$$(w)_{r=R+\frac{h}{2}} = \left(d_r^{(i)} + d_r^{(s)}\right)_{r=R+\frac{h}{2}} \left(u + \frac{h}{2}\psi_x\right)_{r=R+\frac{h}{2}} = \left(d_x^{(i)} + d_x^{(s)}\right)_{r=R+\frac{h}{2}}$$
(11)

Предполагается, что идеальная связь между оболочкой и окружающим грунтом обусловлена тем, что нашей главной целью здесь является изучение эффекта ортотропии. Кроме того, сообщалось [8], что, за исключением очень специфических грунтовых условий, проскальзывание не оказывает большого влияния на напряжение и т. д. в трубе.

Теперь, приняв перемещение оболочки в виде:

$$u = \overline{u}(r)e^{i\xi(x-ct)} = \{\overline{u}_0 + (r-R)\psi_x\}e^{i\xi(x-ct)},$$

$$w = \overline{w}(r)e^{i\xi(x-ct)} = \overline{w}_0 e^{i\xi(x-ct)}, \quad \psi_x = \overline{\psi}_x e^{i\xi(x-ct)}, \quad (12)$$

н используя два граничных условия (11), константы A и B в уравнениях (8) можно определить через $\overline{u_0}$ и $\overline{w_0}$ - перемещения на срединной поверхности оболочки. Наконец, перемещение рассеянного поля получается как

$$d_{r}^{(s)} = \left(\frac{1}{D}\right) \left[\left\{ \left(\overline{c_{1}}\overline{c_{2}}\right) K_{0}\left(\alpha_{2}\right) K_{1}\left(\frac{r\overline{c_{1}}}{R}\right) - \beta^{2} K_{0}\left(\alpha_{1}\right) K_{1}\left(\frac{r\overline{c_{2}}}{R}\right) \right\}^{\overline{w}}_{0} + i \left\{ K_{1}\left(\alpha_{1}\right) K_{1}\left(\frac{r\overline{c_{2}}}{R}\right) - K_{1}\left(\alpha_{1}\right) K_{1}\left(\frac{r\overline{c_{1}}}{R}\right) \right\} \left(\overline{c_{1}}\beta\right)^{\overline{u}}_{0} \right] e^{i\xi(x-ct)},$$

$$d_{x}^{(s)} = \left(\frac{1}{D}\right) \begin{bmatrix} \left\{ \left(\overline{c_{1}}, \overline{c_{2}}\right) K_{1}\left(\alpha_{1}\right) K_{0}\left(\frac{r\overline{c_{2}}}{R}\right) - \beta^{2} K_{1}\left(\alpha_{2}\right) K_{0}\left(\frac{r\overline{c_{1}}}{R}\right) \right\}^{=}_{u_{0}} \\ + i\overline{c_{2}}\beta \left\{ K_{0}\left(\alpha_{1}\right) K_{0}\left(\frac{r\overline{c_{2}}}{R}\right) - K_{0}\left(\alpha_{2}\right) K_{0}\left(\frac{\overline{c_{1}}r}{R}\right) \right\}^{=}_{w_{0}} \end{bmatrix} e^{i\xi(x-ct)}, \\ (13) \\ D = \overline{c_{1}}\overline{c_{2}}K_{1}\left(\alpha_{1}\right) K_{0}\left(\alpha_{2}\right) - \beta^{2} K_{0}\left(\alpha_{1}\right) K_{1}\left(\alpha_{2}\right), \\ \alpha_{1} = \overline{c_{1}}\left(1 + \overline{h}/2\right), \alpha_{2} = \overline{c_{2}}\left(1 + \overline{h}/2\right), \overline{h} = h/R, \\ = \\ u_{0} = \left[\overline{u_{0}} + \left(h/2\right)\overline{\psi_{x}} - i\beta d_{0}I_{0}\left(\alpha_{1}\right)\right], \overline{w_{0}} = \overline{w_{0}} - d_{0}\overline{c_{1}}I_{1}\left(\alpha_{1}\right). \\ (14) \end{aligned}$$

Теперь, когда $d^{(i)}$ и $d^{(s)}$ полностью известны из уравнений (8) и (13), тяговые усилия p_i^* , определяемые уравнением (6), могут быть определены путем вычисления:

$$\sigma_{rr}^{*} = \left(\sigma_{rx}^{(i)} + \sigma_{rr}^{(s)}\right)_{r=R+\frac{h}{2}} = \left[\lambda \left\{ \left(\frac{\partial d_{r}^{T}}{\partial r} + \frac{d_{r}^{T}}{r} + \frac{\partial d_{x}^{T}}{\partial x}\right) \right\} 2\mu \left\{\frac{\partial d_{r}^{T}}{\partial r}\right\} \right]_{r=R+\frac{h}{2}},$$

$$\sigma_{rx}^{*} = \left(\sigma_{rx}^{(i)} + \sigma_{rx}^{(s)}\right)_{r=R+\frac{h}{2}} = \left[\mu \left\{ \left(\frac{\partial d_{r}^{T}}{\partial x} + \frac{\partial d_{x}^{T}}{\partial r}\right) \right\} \right]_{r=R+\frac{h}{2}},$$
(15)

где $d_r^T = (d_r^{(i)} + d_r^{(s)})$ и $d_x^T = (d_x^{(i)} + d_x^{(s)})$ - полные поля радиального и осевого перемещение соответственно.

Следовательно, после нескольких шагов упрощения получается:

$$p_{1}^{*} = \left(\frac{\mu}{R}\right) \left[P_{11}\overline{w_{0}} + \left(\frac{h}{2}\right) P_{12}\overline{\psi_{x}} + P_{13}u_{0} \right] e^{i\xi(x-ct)} - \left(1 + \overline{h}/2\right) \left(\frac{d_{0}}{R}\right) \mu \left[\left(\chi^{2}\gamma^{2} - 2\beta^{2}\right) I_{0}(\alpha_{1}) + \frac{2\overline{c_{1}}^{2}I_{1}(\alpha_{1})}{\alpha_{1}} \right] e^{i\xi(x-ct)},$$

$$p_{3}^{*} = \left(\frac{\mu}{R}\right) \left[P_{31}\overline{w_{0}} + \left(\frac{h}{2}\right) P_{32}\overline{\psi_{x}} + P_{33}u_{0} \right] e^{i\xi(x-ct)} + 2\left(1 + \overline{h}/2\right) \left(\frac{\mu}{R}\right) \left[id_{0}\left(\overline{c_{1}}\beta\right) I_{1}\left(\frac{r\overline{c_{1}}}{R}\right) \right] e^{i\xi(x-ct)},$$

$$(16)$$

$$p_{2}^{*} = \left(\frac{h}{2}\right) p_{3}^{*},$$

Где $u_0 = \overline{u}_0 - i\beta d_0 I_0(\alpha_1), \gamma = \left(\frac{c}{c_1} \right) \beta$ и $\chi^2 = \left(\frac{c_1^2}{c_2^2} \right) = 2(1-m)(1-2m)$, m

— коэффициент Пуассона окружающая среда, и

$$P_{11} = \left(1 + \frac{\overline{h}}{2}\right) \left[\overline{c_2} \frac{\gamma^2 \chi^2 K_0(\alpha_1) K_0(\alpha_2)}{D} - \frac{2}{\left(1 + \frac{\overline{h}}{2}\right)} \right],$$

$$P_{12} = -P_{21} = P_{13} = -P_{31} = -i\left(1 + \frac{\overline{h}}{2}\right) \beta \left[\frac{\gamma^2 \chi^2 K_1(\alpha_2) K_0(\alpha_1)}{D} + 2 \right],$$

$$P_{22} = P_{33} = P_{23} = P_{32} = \left(1 + \frac{\overline{h}}{2}\right) \left[\overline{c_1} \frac{\gamma^2 \chi^2 K_1(\alpha_1) K_1(\alpha_2)}{D} \right]. (17)$$

Когда эти значения p_i^* и перемещения *u* и *w* w из уравнений (12) подставляются в уравнения оболочки (2)-(4), после длительной алгебры упрощенные окончательные уравнения для определения $\{Z\} = \{\overline{w_0}/d_0, (h/2)\overline{\psi_x}/d_0, \overline{w_0}/d_0\}$ приводятся к матричной форме:

$$\left[\left[Q \right] - \overline{\mu} \left[P \right] - \Omega^{2} \left[N \right] \right] \left\{ Z \right\} = -\overline{\mu} \left[P \right] \left\{ F \right\} + \overline{\mu} \left\{ H \right\} \left(1 + \overline{h/2} \right),$$
(18)

где $\Omega^2 = \left(\frac{\rho_0 h R}{G_{x1}}\right) w^2 = \chi^2 \beta^2 \overline{ch} \overline{\mu} \overline{\rho}$ - безразмерная частота, в которой ($\overline{\mu} = \frac{\mu}{G_{x1}}$) и $\overline{\rho} = \frac{\rho_0}{\rho_m}$ - соответственно модуль жесткости и плотность окружающего грунта измеряется в пересчете на соответствующие значения для оболочки материала, а $\overline{c} = \frac{c}{c_1}$ - кажущаяся скорость волны.

Матрица [P] определяется уравнениями (17), а компоненты других матриц $[Q], [N], \{Z\}, \{F\}$ u $\{H\}$ задаются формулой:

$$\begin{bmatrix} Q \end{bmatrix} = \begin{bmatrix} \left(\frac{\overline{h}}{\eta_{3}} \left(1 + \frac{\overline{h}^{2}}{12} \right) + \overline{hk}^{2} \beta^{2} \right) & \left(-2i\beta k^{2} \right) & \left(i\overline{h}\beta \frac{\eta_{2}}{\eta_{3}} \right) \\ -Q_{12} & \frac{4}{\overline{h}} \left(\frac{1}{12} \overline{h}^{2} \frac{\beta^{2}}{\eta_{3}} + k^{2} \right) & \left(\frac{1}{6} \overline{h}^{2} \frac{\beta^{2}}{\eta_{3}} \right) \\ -Q_{13} & Q_{23} & \left(\frac{\overline{h}\beta^{2}}{\eta_{3}} \right) \end{bmatrix}$$
$$\begin{bmatrix} N \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & \overline{h}/6 \\ 0 & \overline{h}/6 & 1 \end{bmatrix}, \quad \{F\} = \begin{cases} \overline{c_{1}} I_{1}(\alpha_{1}) \\ 0 \\ i\beta I_{0}(\alpha_{1}) \end{cases},$$

$$\{H\} = \begin{cases} -\left[I_{0}(\alpha_{1})(\gamma^{2}\chi^{2} - 2\beta^{2}) + \frac{2\overline{c_{1}}I_{1}(\alpha_{1})}{(1 + \overline{h_{2}})}\right] \\ -\frac{2ic_{1}\beta I_{1}(\alpha_{1})}{2i\overline{c_{1}}\beta I_{1}(\alpha_{1})} \end{cases} ,$$

$$\{Z\} = \begin{cases} W\\ V\\ U \end{cases} = \begin{cases} \overline{w_{0}}/d_{0} \\ \overline{w_{0}}/d_{0} \\ \overline{w_{0}}/d_{0} \\ \overline{u_{0}}/d_{0} \end{cases} \end{cases}$$

И

 $\eta_1 = \frac{E_{\theta 1}}{E_{x1}}, \ \eta_2 = \frac{E_{\nu 1}}{E_{x1}}, \ \eta_2 = \frac{G_{x1}}{E_{x1}} -$ параметры ортотропии.

Следует отметить, что правая часть уравнения (18) представляет собой возбуждение, при котором матрица [*P*] зависит от геометрии трубы, свойств материала окружающей среды, а также длины волны и скорости волны возбуждения.

выводы

На основании изложенных выше результатов основные выводы можно кратко перечислить следующим образом.

I. Оболочечный резонанс может иметь место только тогда, когда оболочка погребена под очень твердой (по сравнению с оболочкой) и

каменистой средой и возбуждается волнами меньших длин волн. В мягком грунте резонанса не возникает.

II. Вариации параметров ортотропии $\eta_1 u \eta_2$ не влияют на значения скоростей резонирующих волн. Однако изменение η_3 существенно изменяет скорости резонансных волн.

III. В условиях мягкого грунта ($\overline{\mu} = 0.01 - 0.1$) изменения $\eta_1 u \eta_3$ сильно влияют на радиальное перемещение оболочки при всех скоростях волн, но изменения η_2 2 не влияют, независимо от характера окружающего грунта (твердый или мягкий) и скорости волны с.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1. L. R. L. WANG and M. O'ROURKE 1977 Proceedings of the Current State of Lifeline Earthquake Engineering, ASCE, Los Angeles, California, 252-266. State of the art of buried lifeline earthquake engineering.

2. T. ARIMAN and G. E. MULESKI 1981 International Journal of Earthquake Engineering and Structural Dynamics 9, 133-151. A review of the response of buried pipelines under seismic excitations.

3. I. NELSON and P. WEIDLINGER 1979 Journal of Pressure Vessel Technology 101, 10-20. Dynamic seismic analysis of long segmented lifelines.

4. Safarov, I.I., Teshaev, M.K. Dynamic damping of vibrations of a solid body mounted on viscoelastic supports// Izvestiya Vysshikh Uchebnykh Zavedeniy. Prikladnaya Nelineynaya Dinamika, 2023, 31(1), страницы 63–74.

5. Boltayev, Z., Safarov, I., Teshaev, M., Sharipova, D., Ruziyev, T. On the Action of Normal Moving Load on a Viscoelastic Three-Layer Cylindrical Shell// AIP Conference Proceedings, 2022, 2647, 030006 6. G. G. Yunusov1,a), N.Q. Esanov2,b), SH. N. Almuratov3,c), SH. Ablokulov3,d) and R. Sobirov1,e) "On numerical simulation of vibrations in radio-electronic structures"//AIP Conference Proceedings 2467, 060038 (2022); https://doi.org/10.1063/5.0094082//, 2022 Author(s).

7. S.I. Ibragimovich, A.S. Narpulatovich, E.N. Qurbanovich //<u>Dynamic Calculation of</u> <u>Pipelines Shallow Basis on the Basis of the Thin Slim Theory</u> International Journal of Innovations in Engineering Research and Technology, Jan 23, 2021.

8. Esanov Nuriddin Kurbanovich, Almuratov, Shavkat Narpulatovich, Jurayev, Uktam Shavkatovich //free vibration of three-layer shallow spherical shells // Международный журнал теоретических и практических исследований. 2022. Т. 2. №2. https://alferganus.uz. Publishing Center «Al-Ferganus» LLC.