SUN’IY NEYRON TO’RLARINI O'RGANISH JARAYONIDAGI FALAJLIK SABABLARI

Authors

  • 1.Ashurbayeva Shahloxon Saidjanovna 2.Lazokatoy Rahimova 3.Abdusoliyeva Umida Akramjon qizi 1.Quvasoy shahar alohida ta'lim ehtiyojlari bo'lgan (kar va zaif eshituvchi ) bolalar uchun ixtisoslashtirilgan 90-sonli maktab internat o'qituvchisi 2.Farg'ona shahar, 32-maktab o'qituvchisi 3.Farg’ona davlat unversiteti 2-kurs talabasi Author

Keywords:

Sun'iy neyron tarmoqlari, falajlik sabablari, ma'lumotlarning sifati, overfitting, optimallashtirish algoritmlari, tarmoq arxitekturasi, cross-validation, ma'lumotlar boyitish.

Abstract

Ushbu maqola sun'iy neyron tarmoqlarini o'rganish jarayonida uchraydigan falajlik muammolarini chuqur tahlil qiladi. Maqolada falajlikning asosiy sabablari, ularning sun'iy neyron tarmoqlarining samaradorligiga ta'siri, shuningdek, bu muammolarni bartaraf etishning turli usullari keltirilgan. Falajlik sabablari sifatida ma'lumotlarning yetishmasligi, modelning haddan tashqari moslashuvi, optimallashtirish algoritmlarining samarasizligi va arxitekturalar muammolari muhokama qilinadi. Shuningdek, ushbu muammolarni hal qilish uchun ma'lumotlarni tozalash va boyitish, cross-validation metodlari, tarmoq arxitekturasini optimallashtirish va yangi optimallashtirish algoritmlaridan foydalanish kabi yondashuvlar taklif etiladi. Maqola, shuningdek, kelajakdagi tadqiqotlar yo'nalishlari va sun'iy neyron tarmoqlarini yanada samarali o'rganish uchun takliflarni ham o'z ichiga oladi.

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature.

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ICLR.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. CVPR.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. COMPSTAT.

Abadi, M., Barham, P., Chen, J., et al. (2016). TensorFlow: A System for Large-scale Machine Learning. OSDI.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. ECCV.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. NIPS.

Bousquet, O., & Elisseeff, A. (2002). Stability and Generalization. JMLR.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. AISTATS.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

Nurmatovich, T. I. (2024). Bir qatlamli va ko ‘p qatlamli neyron to ‘rlari. ILM FAN XABARNOMASI, 1(1), 190-191.

Nurmamatovich, T. I., & Kudratullo o‘g, K. U. B. (2024). THE EVOLUTION OF AI: FROM EARLY CONCEPTS TO MODERN BREAKTHROUGHS. Лучшие интеллектуальные исследования, 20(2), 42-46.

Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.

Tojimamatov, I., & Jo’rayeva, M. (2024). BOLSMAN MASHINASI VA UNING AHAMIYATI. Development and innovations in science, 3(4), 154-160.

Nurmamatovich, T. I., & Nozimaxon, E. (2024). Chiqish qatlami vaznlarni sozlash va xatoliklarni teskari tarqalishi algoritmi. ILM FAN XABARNOMASI, 1(1), 29-35.

Tojimamatov, I., & Ismoiljonova, O. (2024). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. Академические исследования в современной науке, 3(12), 153-158.

Nurmamatovich, T. I. (2024, April). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. In " CANADA" INTERNATİONAL CONFERENCE ON DEVELOPMENTS İN EDUCATİON, SCİENCESAND HUMANİTİES (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024, April). SUN'IY NEYRONNING MATEMATIK MODELI HAMDA FAOLLASHTIRISH FUNKTSIYALARI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024, April). SUNIY NEYRON TORLARINI ADAPTIV KUCHAYTIRISH USULI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024). XEBB O’QITISH QOIDASI. " GERMANY" MODERN SCIENTIFIC RESEARCH: ACHIEVEMENTS, INNOVATIONS AND DEVELOPMENT PROSPECTS, 17(1).

Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.

Published

2024-05-26