ANFIS ARXITEKTURASI VA QAT'IYMAS GIBRID KLASSIFIKATORLAR: SUN'IY INTELLEKT SOHASIDAGI QO'LLANILISHLARI VA IMKONIYATLARI
Keywords:
ANFIS, qat'iymas tizimlar, gibrid klassifikatorlar, sun'iy intellekt, neyron tarmoqlar, fuzzy logic, o'rganish qobiliyati, murakkab ma'lumotlar, diagnostika, optimallashtirish.Abstract
Ushbu maqola sun'iy intellekt sohasida ANFIS (Adaptive Neuro-Fuzzy Inference System) arxitekturasi va qat'iymas gibrid klassifikatorlarini tahlil qiladi. ANFIS arxitekturasi sun'iy neyron tarmoqlari va qat'iymas tizimlarning eng yaxshi xususiyatlarini birlashtiradi va murakkab, noaniq ma'lumotlarni qayta ishlashda yuqori samaradorlik ko'rsatadi. Maqolada ANFISning ta'rifi, asosiy tushunchalari, ishlash tamoyillari, afzalliklari va kamchiliklari batafsil yoritilgan. Shuningdek, qat'iymas gibrid klassifikatorlarning qo'llanilish sohalari, turli sohalarda muvaffaqiyatli qo'llanilish misollari va kelajakdagi imkoniyatlari ham keltirilgan. Maqola sun'iy intellektning amaliyotdagi ahamiyatini va u orqali erishish mumkin bo'lgan yutuqlarni tushunishga yordam beradi, kelajakdagi izlanishlar va tadqiqotlar uchun tavsiyalar beradi.
References
Jang, J.-S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics.
Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control.
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall.
Ross, T. J. (2010). Fuzzy Logic with Engineering Applications. John Wiley & Sons.
Kasabov, N. (1996). Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. MIT Press.
Yager, R. R., & Filev, D. P. (1994). Essentials of Fuzzy Modeling and Control. John Wiley & Sons.
Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall.
Lin, C.-T., & Lee, C. S. G. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall.
Pedrycz, W., & Gomide, F. (2007). Fuzzy Systems Engineering: Toward Human-Centric Computing. John Wiley & Sons.
Pal, S. K., & Mitra, S. (1999). Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing. John Wiley & Sons.
Wang, L.-X. (1997). A Course in Fuzzy Systems and Control. Prentice Hall.
Klir, G. J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall.
Herrera, F., & Verdegay, J. L. (1995). Fuzzy sets and operations research: Perspectives. Fuzzy Sets and Systems.
Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques. Springer.
Tojimamatov, I. N., Olimov, A. F., Khaydarova, O. T., & Tojiboyev, M. M. (2023). CREATING A DATA SCIENCE ROADMAP AND ANALYSIS. PEDAGOGICAL SCIENCES AND TEACHING METHODS, 2(23), 242-250.
Тожимаматов, И. Н. (2023). ЗАДАЧИ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА ДАННЫХ. PEDAGOG, 6(4), 514-516.
Muqaddam, A., Shahzoda, A., Gulasal, T., & Isroil, T. (2023). NEYRON TARMOQLARDAN FOYDALANIB TASVIRLARNI ANIQLASH USULLARI. SUSTAINABILITY OF EDUCATION, SOCIO-ECONOMIC SCIENCE THEORY, 1(8), 63-74.
Raximov, Q. O., Tojimamatov, I. N., & Xo, H. R. O. G. L. (2023). SUNIY NЕYRON TARMOQLARNI UMUMIY TASNIFI. Scientific progress, 4(5), 99-107.
Ortiqovich, Q. R., & Nurmamatovich, T. I. (2023). NEYRON TARMOQNI O ‘QITISH USULLARI VA ALGORITMLARI. Scientific Impulse, 1(10), 37-46.
Tojimamatov, I. N., Mamalatipov, O., Rahmatjonov, M., & Farhodjonov, S. (2023). NEYRON TARMOQLAR. Наука и инновация, 1(1), 4-12.
Tojimamatov, I. N., Mamalatipov, O. M., & Karimova, N. A. (2022). SUN’IY NEYRON TARMOQLARINI O ‘QITISH USULLARI. Oriental renaissance: Innovative, educational, natural and social sciences, 2(12), 191-203.
Muqaddam, A., Shahzoda, A., Gulasal, T., & Isroil, T. (2023). NEYRON TARMOQLARDAN FOYDALANIB TASVIRLARNI ANIQLASH USULLARI. SUSTAINABILITY OF EDUCATION, SOCIO-ECONOMIC SCIENCE THEORY, 1(8), 63-74.
Raximov, Q. O., Tojimamatov, I. N., & Xo, H. R. O. G. L. (2023). SUNIY NЕYRON TARMOQLARNI UMUMIY TASNIFI. Scientific progress, 4(5), 99-107.
Raxmatjonova, M. N., & Tojimamatov, I. N. (2023). BIZNESDA SUNIY INTELEKT TEXNOLOGYALARI VA ULARNI AHAMIYATI. Лучшие интеллектуальные исследования, 11(3), 46-52.
Nurmatovich, T. I. (2024). Bir qatlamli va ko ‘p qatlamli neyron to ‘rlari. ILM FAN XABARNOMASI, 1(1), 190-191.
Nurmamatovich, T. I., & Kudratullo o‘g, K. U. B. (2024). THE EVOLUTION OF AI: FROM EARLY CONCEPTS TO MODERN BREAKTHROUGHS. Лучшие интеллектуальные исследования, 20(2), 42-46.
Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.
Tojimamatov, I., & Jo’rayeva, M. (2024). BOLSMAN MASHINASI VA UNING AHAMIYATI. Development and innovations in science, 3(4), 154-160.
Nurmamatovich, T. I., & Nozimaxon, E. (2024). Chiqish qatlami vaznlarni sozlash va xatoliklarni teskari tarqalishi algoritmi. ILM FAN XABARNOMASI, 1(1), 29-35.
Tojimamatov, I., & Ismoiljonova, O. (2024). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. Академические исследования в современной науке, 3(12), 153-158.
Nurmamatovich, T. I. (2024, April). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. In " CANADA" INTERNATİONAL CONFERENCE ON DEVELOPMENTS İN EDUCATİON, SCİENCESAND HUMANİTİES (Vol. 17, No. 1).
Nurmamatovich, T. I. (2024, April). SUN'IY NEYRONNING MATEMATIK MODELI HAMDA FAOLLASHTIRISH FUNKTSIYALARI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).
Nurmamatovich, T. I. (2024, April). SUNIY NEYRON TORLARINI ADAPTIV KUCHAYTIRISH USULI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).
Nurmamatovich, T. I. (2024). XEBB O’QITISH QOIDASI. " GERMANY" MODERN SCIENTIFIC RESEARCH: ACHIEVEMENTS, INNOVATIONS AND DEVELOPMENT PROSPECTS, 17(1).
Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.