SUN'IY INTELLEKT TIZIMLARIDA ISHONCHLILIK KOEFFITSIENTIDAN FOYDALANISH

Authors

  • Tojimamatov Isroil Nurmamatovich,Tojimatov Inomjon Ikromjon oʻgʻli Farg’ona davlat unversiteti Author

Keywords:

Sun'iy intellekt, ishonchlilik koeffitsienti, mashinaviy o'rganish, neyron tarmoqlar, bayes statistikasi, Neyman-Pearson Lemmasi, Fisherning F-statistikasi, bootstrap metodikasi, diagnostika, kredit riski, ishlab chiqarish sifati, avtonom avtomobillar.

Abstract

Ushbu maqolada sun'iy intellekt tizimlarida ishonchlilik koeffitsientidan foydalanish masalasi ko'rib chiqiladi. Ishonchlilik koeffitsienti, sun'iy intellekt algoritmlarining natijalari va qarorlarining to'g'riligini baholashda muhim rol o'ynaydi. Maqolada ishonchlilik koeffitsientining nazariy asoslari, matematik modellari va formulalari, shuningdek, uni hisoblashda qo'llaniladigan asosiy metodlar batafsil tahlil qilinadi. Shuningdek, maqolada ishonchlilik koeffitsienti ishlatilgan real dunyo misollari va tadqiqotlar keltiriladi. Kelajakda ushbu koeffitsientni yanada takomillashtirish va qo'llash imkoniyatlari ham ko'rib chiqiladi.

References

Russell, S., Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2013). Bayesian Data Analysis. CRC Press.

Neyman, J., Pearson, E. S. (1933). On the Problem of the Most Efficient Tests of Statistical Hypotheses. Philosophical Transactions of the Royal Society of London.

Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver and Boyd.

Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. CRC Press.

LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85-117.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587), 484-489.

Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O. (2017). Understanding Deep Learning Requires Rethinking Generalization. arXiv preprint arXiv:1611.03530.

Kingma, D. P., Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114.

Published

2024-05-17