CHUQUR OʻRGANISH USULLARI SUN'IY INTELLEKTDAGI AHAMIYATI

Authors

  • Mirzaakbarov Dilshod Dovlatboyevich,Mahmudova Gulsora Imomali qizi Farg’ona davlat unversiteti Author

Keywords:

Chuqur oʻrganish, sun'iy intellekt, neyron tarmoqlari, konvolyutsion neyron tarmoqlari (CNN), rekurrent neyron tarmoqlari (RNN), qoʻllanma tarmoqlar, qoʻshimcha oʻrganish tarmoqlari (GAN), tabiiy tilni qayta ishlash (NLP), rasmlarni tanib olish, ovozli yordamchilar.

Abstract

Chuqur oʻrganish sun'iy intellektning eng faol rivojlanayotgan sohalaridan biri hisoblanadi. Ushbu maqola chuqur oʻrganishning asosiy tushunchalari, turli arxitekturalari va ularning amaliy qoʻllanilish sohalarini batafsil yoritadi. Shuningdek, chuqur oʻrganish texnologiyalarining hozirgi muammolari va kelajakdagi rivojlanish istiqbollari koʻrib chiqiladi. Maqolada chuqur oʻrganishning tabiiy tilni qayta ishlash, rasmlarni tahlil qilish, ovoz va audio tahlili kabi sohalardagi qoʻllanilishi, shuningdek, uning avtonom haydovchilik va tibbiyotda qoʻllanilishi kabi dolzarb masalalar muhokama qilinadi. Chuqur oʻrganishning kelajakdagi ilmiy va amaliy tadqiqotlar uchun asosiy yoʻnalishlari va yangi texnologiyalarining rivojlanishi ham ta'kidlanadi.

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Graves, A., Mohamed, A.-R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. 2013 IEEE international conference on acoustics, speech and signal processing.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Vaswani, A., et al. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Devlin, J., et al. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition.

Muqaddam, A., Shahzoda, A., Gulasal, T., & Isroil, T. (2023). NEYRON TARMOQLARDAN FOYDALANIB TASVIRLARNI ANIQLASH USULLARI. SUSTAINABILITY OF EDUCATION, SOCIO-ECONOMIC SCIENCE THEORY, 1(8), 63-74.

Raximov, Q. O., Tojimamatov, I. N., & Xo, H. R. O. G. L. (2023). SUNIY NЕYRON TARMOQLARNI UMUMIY TASNIFI. Scientific progress, 4(5), 99-107.

Ortiqovich, Q. R., & Nurmamatovich, T. I. (2023). NEYRON TARMOQNI O ‘QITISH USULLARI VA ALGORITMLARI. Scientific Impulse, 1(10), 37-46.

Tojimamatov, I. N., Mamalatipov, O., Rahmatjonov, M., & Farhodjonov, S. (2023). NEYRON TARMOQLAR. Наука и инновация, 1(1), 4-12.

Tojimamatov, I. N., Mamalatipov, O. M., & Karimova, N. A. (2022). SUN’IY NEYRON TARMOQLARINI O ‘QITISH USULLARI. Oriental renaissance: Innovative, educational, natural and social sciences, 2(12), 191-203.

Muqaddam, A., Shahzoda, A., Gulasal, T., & Isroil, T. (2023). NEYRON TARMOQLARDAN FOYDALANIB TASVIRLARNI ANIQLASH USULLARI. SUSTAINABILITY OF EDUCATION, SOCIO-ECONOMIC SCIENCE THEORY, 1(8), 63-74.

Raximov, Q. O., Tojimamatov, I. N., & Xo, H. R. O. G. L. (2023). SUNIY NЕYRON TARMOQLARNI UMUMIY TASNIFI. Scientific progress, 4(5), 99-107.

Nurmatovich, T. I. (2024). Bir qatlamli va ko ‘p qatlamli neyron to ‘rlari. ILM FAN XABARNOMASI, 1(1), 190-191.

Nurmamatovich, T. I., & Kudratullo o‘g, K. U. B. (2024). THE EVOLUTION OF AI: FROM EARLY CONCEPTS TO MODERN BREAKTHROUGHS. Лучшие интеллектуальные исследования, 20(2), 42-46.

Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.

Tojimamatov, I., & Jo’rayeva, M. (2024). BOLSMAN MASHINASI VA UNING AHAMIYATI. Development and innovations in science, 3(4), 154-160.

Nurmamatovich, T. I., & Nozimaxon, E. (2024). Chiqish qatlami vaznlarni sozlash va xatoliklarni teskari tarqalishi algoritmi. ILM FAN XABARNOMASI, 1(1), 29-35.

Tojimamatov, I., & Ismoiljonova, O. (2024). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. Академические исследования в современной науке, 3(12), 153-158.

Nurmamatovich, T. I. (2024, April). BIR QATLAMLI PERCEPTRONNI O ‘QITISH. In " CANADA" INTERNATİONAL CONFERENCE ON DEVELOPMENTS İN EDUCATİON, SCİENCESAND HUMANİTİES (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024, April). SUN'IY NEYRONNING MATEMATIK MODELI HAMDA FAOLLASHTIRISH FUNKTSIYALARI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024, April). SUNIY NEYRON TORLARINI ADAPTIV KUCHAYTIRISH USULI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).

Nurmamatovich, T. I. (2024). XEBB O’QITISH QOIDASI. " GERMANY" MODERN SCIENTIFIC RESEARCH: ACHIEVEMENTS, INNOVATIONS AND DEVELOPMENT PROSPECTS, 17(1).

Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.

Saytlar ro‘yxati:

https://zenodo.org/records/6610537

https://uz.eyewated.com/chuqur-organish-mashinani-eng-yaxshi-tarzda-organish/

https://srcyrl.yongslcd.com/info/differences-and-connections-between-artificial-69703013.html

https://inlibrary.uz/index.php/new-uzbekistan/article/view/32178

Published

2024-05-17