- WORLDLY KNOWLEDGE
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCHERS
ISSN : 3030-332X IMPACT FACTOR (Research bib) — 7,293

Hasan Rustamovich Rasulov
Asia International University, teacher of the "General Technical Sciences" department

FASTAPI: A MODERN WEB FRAMEWORK FOR PYTHON

Abstract:This article analyzes FastAPI, a modern web framework for building APIs with Python.
Detailed information is provided on FastAPI’s main features, its asynchronous capabilities, data
validation, and the use of Python type hints. The article covers how FastAPI compares with other
frameworks like Flask and Django, its advantages in terms of speed and ease of use, and its
applications for building modern web services. Recommendations are made on where FastAPI is best
utilized, including real-time applications, microservices, and data-heavy APIs.

Keywords:FastAPI, Python, web framework, asynchronous programming, REST API, data validation,
dependency injection, Pydantic, OpenAPI, performance, scalability

Introduction

FastAPI is a modern web framework for Python that enables developers to build high-performance
APIs quickly and efficiently. It takes full advantage of Python type hints and asynchronous
programming, providing automatic data validation, request parsing, and documentation generation
through OpenAPI standards. FastAPI has gained significant popularity in recent years due to its speed,
ease of use, and comprehensive feature set.

Asynchronous Programming in FastAPI

FastAPI is built on asynchronous Python frameworks like Starlette and Uvicorn, which allow non-
blocking code execution. Asynchronous programming is essential for applications that handle many
concurrent tasks, such as chat applications, live data processing, and any system requiring real-time
performance.

In synchronous frameworks, tasks are executed one at a time, and requests can only be handled after
previous requests finish. This creates bottlenecks for applications dealing with many simultaneous
requests. FastAPI allows developers to use async and await syntax, taking full advantage of Python’s
asynchronous capabilities, which makes it faster than many traditional Python web frameworks like
Flask and Django.

Below is an example of how asynchronous routes are implemented in FastAPI:

from fastapi import FastAPI
app = FastAPI()

@app.get("/items/{item_id}")
async def read item(item_id: int):
return {"item id": item_id}

In this example, the read item function is asynchronous, meaning it can handle multiple requests
concurrently, which improves performance in high-traffic environments.

Data Validation with Pydantic

727 | VOLUME 8, ISSUE 1, 2024

WORLDLY KNOWLEDGE
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCHERS
ISSN : 3030-332X IMPACT FACTOR (Research bib) — 7,293

One of the key features of FastAPI is its seamless integration with Pydantic, a data validation library
that uses Python type hints to validate incoming requests. By defining Pydantic models, developers
can ensure that their APIs receive and return structured, validated data, reducing the risk of errors.

Here is an example of how Pydantic is used for request validation:

from pydantic import BaseModel

class Item(BaseModel):
name: str
price: float
is_offer: bool = None

@app.post("/items/")
async def create_item(item: Item):
return item

In this example, the Item model ensures that any data sent to the /items/ endpoint follows the structure
defined by the model, including correct types and required fields.

Dependency Injection in FastAPI

FastAPI supports dependency injection, allowing developers to define dependencies that are
automatically resolved when required. This can be useful for injecting database connections,
configurations, or other resources into the routes. Dependency injection in FastAPI improves code
modularity and reusability.

An example of using dependency injection:

from fastapi import Depends

def get_db():
db = DBSession()
try:
yield db
finally:
db.close()

@app.get("/users/")

async def get users(db: Session = Depends(get db)):
users = db.query(User).all()
return users

In this example, the get db function is injected into the route as a dependency, ensuring that a database
session is available to query data. FastAPI will automatically call get db when needed and manage its
lifecycle.

Security and Authentication

728 | VOLUME 8, ISSUE 1, 2024

WORLDLY KNOWLEDGE
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCHERS
ISSN : 3030-332X IMPACT FACTOR (Research bib) — 7,293

FastAPI offers robust tools for implementing security features, including OAuth2, JWT tokens, and
API key-based authentication. The framework provides decorators to protect routes, ensuring that only
authenticated users have access.

Here is a basic example of implementing OAuth2 authentication:

from fastapi.security import OAuth2PasswordBearer
oauth2 scheme = OAuth2PasswordBearer(tokenUrl="token")

@app.get("/users/me")
async def read users_me(token: str = Depends(oauth2 scheme)):
return {"token": token}

Performance Benchmarks

Numerous benchmarks demonstrate FastAPI’s superior performance compared to traditional Python
frameworks. Its asynchronous capabilities allow it to handle tens of thousands of requests per second.
For instance, FastAPI is capable of reaching speeds comparable to Node.js, while still maintaining the
flexibility of Python’s ecosystem.

Deployment Strategies

FastAPI applications can be deployed using several strategies, including Docker containers, cloud
services (AWS Lambda, Google Cloud), and traditional server setups. Uvicorn, the ASGI server on
which FastAPI runs, is highly optimized for handling asynchronous web traffic.

Summary

FastAPI is a versatile and high-performance framework that has changed the landscape of Python web
development. Its built-in support for asynchronous programming, automatic data validation,
dependency injection, and OpenAPI-based documentation make it a go-to choice for building modern
APIs. FastAPI is particularly well-suited for applications that require high throughput, low latency,
and scalability, such as real-time services, microservices architectures, and data-driven APIs.

Used Literature:

1. Muxtaram Boboqulova Xamroyevna. (2024). THERMODYNAMICS OF LIVING SYSTEMS.
Multidisciplinary Journal of Science and Technology, 4(3), 303—-308.

2. Muxtaram Boboqulova Xamroyevna. (2024). QUYOSH ENERGIYASIDAN FOYDALANISH .
TADQIQOTLAR.UZ, 34(2), 213-220.

3. Xamroyevna, M. B. (2024). Klassik fizika rivojlanishida kvant fizikasining orni. Ta'limning
zamonaviy transformatsiyasi, 6(1), 9-19.

4. Xamroyevna, M. B. (2024). ELEKTRON MIKROSKOPIYA USULLARINI TIBBIYOTDA
AHAMIYATI. PEDAGOG, 7(4), 273-280.

5. Boboqulova, M. X. (2024). FIZIKANING ISTIQBOLLI TADQIQOTLARI. PEDAGOG, 7(5),
277-283.23. Xamroyevna, M. B. (2024). RADIATSION NURLARNING INSON
ORGANIZMIGA TASIRI. PEDAGOG, 7(6), 114-125.

729 | VOLUME 8, ISSUE 1, 2024

WORLDLY KNOWLEDGE
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCHERS
ISSN : 3030-332X IMPACT FACTOR (Research bib) — 7,293

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

boGokynoBa Myxtapam. (2024). AnbpTepHAaTUBHbIE WCTOYHUKA DHEPIMM M UX
UCIOJIb30BaHKe. MeXAUCIUILTUHAPHBIHN KypHaI HAYKU U TeXHUKH, 2 (9), 282-291.

Usmonov Firdavs. (2024). MINERAL ENRICHMENT PROCESSES. MEJUIIMHA,
INEJATOI'MKA 1 TEXHOJIOTHS: TEOPUS U ITPAKTUKA, 2(9), 250-260

8. Jalilov, R., Latipov, S., Aslonov, Q., Choriyev, A., & Maxbuba, C. (2021, January). To the
question of the development of servers of real-time management systems of electrical engineering
complexes on the basis of modern automation systems. In CEUR Workshop Proceedings (Vol.
2843).

9. Otajonova Sitorabonu. (2024). [IPUMEHEHUE DJIEMEHTOB TPUT'OHOMETPUU Ilpu
PEIHEHUN TPEYI'OJIbHUKOB. MEJUIIMHA, TIEJATOTUKA W TEXHOJIOI'UA:
TEOPUS U TTPAKTUKA, 2(9), 292-304.

To’raqulovich, M. O. (2024). OLIY TA’LIM MUASSASALARIDA AXBOROT
KOMMUNIKASIYA TEXNOLOGIYALARI DARSLARINI TASHKIL ETISHDA
ZAMONAVIY USULLARDAN FOYDALANISH. PEDAGOG, 7(6), 63-74.

Muradov, O. (2024, January). IN TEACHING INFORMATICS AND INFORMATION
TECHNOLOGIES REQUIREMENTS. In MexayHapogHas KOH(PEPEHIMS aKaJeMHYCCKUX
Hayk (Vol. 3, No. 1, pp. 97-102).

To’raqulovich, M. O. (2024). OLIY TA’LIM MUASSASALARIDA TA’LIMNING
INNOVASION TEXNOLOGIYALARDAN FOYDALANISH. PEDAGOG, 7(5), 627-635.
To’raqulovich, M. O. (2024). IMPROVING THE TEACHING PROCESS OF IT AND
INFORMATION TECHNOLOGIES BASED ON AN INNOVATIVE
APPROACH. Multidisciplinary Journal of Science and Technology, 4(3), 851-859.

Murodov, O. (2024). DEVELOPMENT AND INSTALLATION OF AN AUTOMATIC
TEMPERATURE CONTROL SYSTEM IN ROOMS. Solution of social problems in management
and economy, 3(2), 91-94.

Bakaesa Mexpunuco. (2024). WCIIOJIbB3OBAHUE BUPTYAJIBHBIX JIABOPATOPHBIX
PABOT B OBPA30OBATEJIbHOM ITPOLIECCE nu nx
[MPEUMYUIECTBA. MHoronpomIbHbIN)KypHaI HAYKH U TEXHOIOTHH, 2(9), 174-183.
Djuraevich, A. J. (2021). Zamonaviy ta'lim muhitida raqamli pedagogikaning o’rni va
ahamiyati. EBpasuiickuii)xypHan akageMuyeckux ucciepoBanui, 1(9), 103-107.

Ashurov, J. D. (2024). TA'LIM JARAYONIDA SUNTY INTELEKTNI QO'LLASHNING
AHAMIYATI. PEDAGOG, 7(5), 698-704.

Djo‘rayevich, A. J. (2024). THE IMPORTANCE OF USING THE PEDAGOGICAL
METHOD OF THE" INSERT" STRATEGY IN INFORMATION TECHNOLOGY PRACTICAL
EXERCISES. Multidisciplinary Journal of Science and Technology, 4(3), 425-432.

Ashurov, J. D. (2024). AXBOROT TEXNOLOGIYALARI VA JARAYONLARNI
MATEMATIK ~ MODELLASHTIRISH FANINI O ‘QITISHDA INNOVATSION
YONDASHUVGA ASOSLANGAN METODLARNING AHAMIYATI. Zamonaviy fan va ta'lim
yangiliklari xalqaro ilmiy jurnal, 2(1), 72-78.

Ashurov, J. (2023). OLIY TA’LIM MUASSASALARIDA “RADIOFARMATSEVTIK
PREPARATLARNING GAMMA TERAPIYADA QO ‘LLANILISHI” MAVZUSINI “FIKR,
SABAB, MISOL, UMUMLASHTIRISH (FSMU)” METODI YORDAMIDA
YORITISH. llentpanbHoazuaTckuii xypHas oOpa3oBaHus U nHHOBanwmi, 2(6 Part 4), 175-181.

730 | VOLUME 8, ISSUE 1, 2024

	Abstract:This article analyzes FastAPI, a modern w
	Keywords:FastAPI, Python, web framework, asynchron
	Introduction
	Asynchronous Programming in FastAPI
	Data Validation with Pydantic
	Dependency Injection in FastAPI
	Security and Authentication
	Performance Benchmarks
	Deployment Strategies
	Summary
	Used Literature:

