

ISSN: 3030-332X IMPACT FACTOR (Research bib) - 7,293

ПАРОГЕНЕРАТОР С ЭЛЕКТРИЧЕСКИМ НАГРЕВАТЕЛЕМ

Arzikulov Xusnidin Murodjon oʻgʻli Ассистент Андижанского машиностроительного института, Sharobidinov Abdulloh Hamidillo oʻgʻli Студент Андижанского машиностроительного института

Электрический парогенератор — это электрическое нагревательное устройство, небольшой паровой котел, который использует электричество для испарения воды с образованием пара. Этот парогенератор достиг продвинутого уровня среди аналогичных генераторов и используется в качестве эффективной и совершенной системы обслуживания. Парогенераторы стали надежным помощником промышленности Европы, Ближнего Востока, Юго-Восточной Азии и других регионов. Компания постоянно активно развивается и внедряет инновации, чтобы предоставлять более качественные парогенераторы и услуги промышленным предприятиям, используя науку и технологии.

Паровой котел высококачественного черного изготовлен ИЗ металла или высококачественной нержавеющей стали. Современный парогенератор с электрическим сопротивлением очень долговечен и изготовлен с высочайшим мастерством. Теплоизоляционное покрытие парового котла выполнено из высококачественных термостойких материалов. Для подачи воды в паровой котел за короткий промежуток времени использовался насос высокого давления. Операционная система разделена на автоматическое управление и полуавтоматическое управление. Когда источник воды подключен к насосу, а парогенератор подключен к электроэнергии, он может производить пар с давлением от 0,4 МПа до 0,7 МПа при непрерывном нагреве резистивного нагревателя в течение 30 минут. Он широко используется в промышленном паровом оборудовании, гладильной, прачечной, пищевой промышленности, на кухнях общественного питания, в семейных мастерских и других областях, а также в школах, больницах и гостиницах.

Рисунок 1. Парогенератор с электрическим нагревателем.

Как использовать:

Сначала необходимо установить парогенератор с электронагревателем, клапаном выпуска пара, защитной сеткой, регулятором давления и манометром, а регулятор давления подключить к системе парогенератора.

Водопроводная труба подключена к впускной трубе резервуара для воды, поплавковый шар установлен в резервуаре для воды, клапан подачи воды открыт, и насос должен быть

ISSN: 3030-332X IMPACT FACTOR (Research bib) - 7,293

заполнен водой, чтобы резервуар для воды был подключен к автоматическому водопроводу. система устройства контроля уровня. Для этого из насоса удаляют воздух, поворачивая винт, удаляющий воздух из насоса.

Включается электропитание, затем включателем включается питание электропарогенератора, загорается индикатор добавления воды, и водяной насос начинает подавать воду в паровой котел. Когда реле уровня определяет уровень воды (когда указатель уровня воды достигает стандартного показателя), оно выключается и загорается индикатор нагрева. Давление пара достигает номинального давления в течение 20-30 минут. По истечении этого времени пароварку можно открыть и использовать пар.

Полуавтоматический электронагреватель работает путем добавления воды вручную, тогда как система автоматического управления выполняет ту же функцию.

Инструкции для пользователей:

Чтобы продлить срок службы парогенератора, необходимо максимально использовать очищенную мягкую воду. Перед подключением водопровода необходимо один раз промыть и слить воду, чтобы очистить ее от мусора, такого как песок, камни и железо. Осадок, попадающий в резервуар для воды и водяной насос, может повредить насос. Установите фильтр на входе воды для облегчения контроля.

Напряжение источника должно составлять рабочее напряжение 220 В/380 В. Если ошибка большая, следует установить автоматический стабилизатор напряжения, иначе он сгорит устройство или уменьшит выработку пара.

Водогрейный котел следует опорожнять один раз в день, чтобы не скапливалось слишком много осадка и не забивалось трубы. Чтобы обеспечить нормальную работу машины и продлить срок ее службы, необходимо раз в месяц чистить электрод контроля уровня воды, внутреннюю часть парового котла, электронагревательное устройство и резервуар для воды.

Давление пара фиксировано на уровне 0,4 МПа или 0,7 МПа, и пользователю не нужно изменять управляющее давление.

Если после длительного использования вы обнаружите отложения внутри парового котла, его следует очистить перед использованием.

Ошибки и способы их устранения.

Таблица 1

Содержание	Причины неисправности	Метод удержания и удаления
неисправности		
Невозможно	1. Поврежден	1. Замените сердечник выключателя.
запустить после	предохранитель	2. Проверьте источник питания и
включения	2. Плохая проводка	проводку.
	питания	3. Отремонтируйте или замените
	3. Контактор не замкнут.	контактор.
Водяной насос не	1. Поврежден	1. Замените плавкий сердечник
вращается	предохранитель	2. отремонтируйте или замените
	2. Не замкнут контактор	контактор
	3. Заклинило рабочее	3. очистите крыльчатку от посторонних
	колесо водяного насоса	предметов, при повреждении замените
	4. Поврежден двигатель	крыльчатку
	водяного насоса и	4. отремонтируйте двигатель или
	перегорел конденсатор	замените конденсатор
Недостаточное	1. Водяной насос	1. Проверьте направление (лопасти
давление подачи		вентилятора за водяным насосом
воды водяного	2. Наличие воздуха в	вращаются по часовой стрелке) и
насоса или	насосной системе.	измените подключение проводки.

RS (No. 1) Control of the control of

ISSN: 3030-332X IMPACT FACTOR (Research bib) - 7,293

отсутствие подачи воды	3. Водяной канал заблокирован. 4. Вход водяного насоса пуст.	2. Отвинтите выпускную часть воздушного насоса. После того, как вода вытечет из резьбового отверстия, снова закройте его. 3. Удаление посторонних предметов с водного пути 4. Закрепите входное отверстие насоса жесткой воды.
Медленный нагрев или отсутствие нагрева	1. сгорел нагреватель 2. сгорел предохранитель 3. сгорел контактор 4. ненормальное напряжение питания	 Замените нагреватель Замените предохранитель Отремонтируйте или замените контактор. Попросите электрика проверить
Контактор не работает	1 заедает 2 катушка сгорела 3 контактор поврежден	1. После отключения питания используйте отвертку, чтобы вытащить контакты. 2. Замените контактор 3. Отремонтировать или заменить контакты
Всасывание контактора слабое или не сильное	1. Напряжение питания слишком низкое 2. Контактор периодически прыгает 3. Трехфазное питание не совпадает по фазе.	 Проверьте напряжение питания. напряжение слишком низкое, чтобы увеличить Отметьте и дайте исключение
Насос останавливается или не работает	1. заедает указатель уровня 2. поврежден регулятор уровня 3. сгорел и заклинил контактор	 Снимите регулятор уровня жидкости, чтобы удалить шлаку. Замените контроллер уровня жидкости. Отремонтируйте или замените контактор.
Давление водяного насоса не высокое	 Крыльчатка изношена Насос изношен В насосе есть воздух 	1. Отрегулируйте зазор между крыльчаткой и насосом или замените крыльчатку 2. Отрегулируйте зазор или замените водяной насос 3. Отпустите воздух
Уровень воды в генераторе не поддерживается	1. Утечка воды из обратного клапана или электромагнитного клапана.	1. Замените невозвратное пространство или электромагнитный
Слишком высокое или слишком низкое рабочее давление пара	1. Неисправен регулятор давления	1. Высокая скорость или замена эквивалентного регулятора давления

ISSN: 3030-332X IMPACT FACTOR (Research bib) - 7,293

Неисправность	1. Низкое сопротивление	1. Держите его сухим и попросите
электропроводки	изоляции, перегрев	электрика провести капитальный ремонт
	провода	
Утечка воды,	1. Соединение	1. Капитальный ремонт и подтяжка,
утечка пара	трубопровода или	замена клапана
	задвижка негерметичны.	2. замена уплотнительного кольца
	2. Повреждено	
	уплотнительное кольцо.	

Проблемы, требующие внимания.

Чтобы обеспечить личную безопасность пользователей, машина должна быть надежно заземлена перед использованием, а все детали должны быть проверены и затянуты перед использованием или в течение одной недели после использования.

Не изменяйте параметры режима работы парогенератора и не заменяйте запасные части на свои.

При удалении различных отложений из парового котла, когда давление пара парового котла упадет до 0,1 МПа, откройте кран слива воды внизу и удалите из водопроводной трубы посторонние предметы, например, отложения со дна котла. Прежде чем открыть слив воды, необходимо обратить внимание на технику безопасности, во избежание несчастных случаев в направлении выхода воды не должно быть персонала.

Чтобы продлить срок службы машины, электронагреватель должен защищать от чрезмерного загрязнения. Для этого используйте для потребления парогенератора мягкую воду и регулярно очищайте поверхность электронагревателя или электрода контроля уровня жидкости.

Когда напряжение сети ниже номинального, сила контакта реле и контактора снижается, из-за чего оно постоянно прыгает и легко ломается.

Регулярно очищайте клеммный блок и тщательно его проверяйте. Сопротивление изоляции должно быть больше 2 МОм, а сопротивление питания — менее 4 Ом, чтобы электрический ток не причинял вреда людям.

Необходимо часто проверять герметичность водопроводных и паровых труб, утечка воды или пара может стать причиной опасных ситуаций.

При ремонте или замене деталей сначала отключите электропитание и выпустите пар.

В резервуаре для воды не должно быть недостатка воды. Категорически запрещается запускать систему водоснабжения без воды. Причина в том, что если насос работает без воды, у него сгорает мотор.

Эта машина оснащена самым современным предохранительным устройством — предохранительным клапаном. Когда регулятор давления и сеть безопасности выходят из строя и давление достигает 0,5 МПа или 0,8 МПа, предохранительный клапан автоматически выпустит пар из котла.

После остановки работы парогенератора для повышения надежности и срока службы отопительного устройства следует закрыть кран выхода пара и открыть клапан выхода воды. Причина – предотвратить образование внутреннего вакуума после остывания котла.

Использованная литература:

- 1. Ibrohimjon oʻgʻli, T. R. (2024). Failure Analysis of Automobile Generators. Web of Semantics: Journal of Interdisciplinary Science, 2(3), 300-304.
- 2. Ravshanbek oʻgʻli, B. A. METHODS OF MEASURING THE WATER LEVEL IN STEAM GENERATORS Arzikulov Xusnidin Murodjon ugli.
- 3. Uktamovich, A. S. (2024). НОРМИРОВАНИЕ РАСХОДА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ НА ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЯХ. International journal of scientific researchers (IJSR) INDEXING, 4(1), 338-341.

JOURNAL OF SCHOOL OF S

WORLDLY KNOWLEDGE INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCHER

ISSN: 3030-332X IMPACT FACTOR (Research bib) - 7,293

- 4. Yakubovich, A. B., & Uktamovich, A. S. (2024). ПРОВОДА ЛЭП ПОРА МЕНЯТЬ ИЗ ЗА НИЗКОЙ ЭНЕРГОЭФФЕКТИВНОСТЬ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ. International journal of scientific researchers (IJSR) INDEXING, 4(2), 144-148.
- 5. Arzikulov , X. M. ugli. (2023). SIQILGAN HAVO TIZIMLARIDA ENERGIYA TEJASH. Educational Research in Universal Sciences, 2(14 SPECIAL), 620–625.
- 6. Khodjimatov, M. B. (2023). THE PRINCIPLE OF OPERATION OF AUTOMATED LATHES. International journal of scientific researchers (IJSR) INDEXING, 3(2)
- 7. Ходжиматов, М. Б. (2023). ВЫБОР ПОВЕРХНОСТИ СЕЧЕНИЯ СЕТЕВОГО ПРОВОДНИКА ПО ДОПУСТИМОМУ РАССЕЯНИЮ НАПРЯЖЕНИЯ. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 35(5), 52-56.
- 8. Teshaboyev, R. I. O. G., & O'Tanov, A. A. O. G. (2021). ENERGIYA SAMARALI BOSHQARILUVCHI O'ZGARMAS TOK O'ZGARTGICHLAR VA ULARNING AVFZALLIKLARI. Science and Education, 2(3), 119-122.
- 9. Yenikeyev, A. A., & Teshaboyev, R. I. O. G. (2021). Ip yiguruv qurilmalarida energiya sarfi va o'lchash vositlari. Science and Education, 2(5), 319-322.
- 10. Абдихошимов, М. (2023). ВЫБОР СИЛОВОЙ СХЕМЫ КРАНОВОГО ТПН. Лучшие интеллектуальные исследования, 11(5), 99-102.
- 11. Abdixoshimov, M., & Tojimurodov, D. (2023). KRANLAR TO 'G 'RISIDA UMUMIY TUSHUNCHALAR. Science and innovation in the education system, 2(6), 5-7.
- 12. Абдухалилов, Д., & Гафуров, И. (2021). Методы реформирования использования и качественной передачи электроэнергии. Современные научные исследования и инновации, (4).
- 13. Абдухалилов, Д. К., & Мадумаров, М. Н. (2019). МЕТОДЫ ЭНЕРГОСНИЖЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ И ЭЛЕКТРОУСТАНОВКАХ. Развитие и актуальные вопросы современной науки, (6), 4-7
- 14. Исмаилов, А. И., Тухтамишев, Б. К., & Азизов, Б. Я. (2014). Актуальные вопросы энергетики АПК Андижанской области Узбекистана. Российский электронный научный журнал, (7), 13-18
- 15. Yuldashev, B. R. (2024). DIRECTIONAL RELAY-RESISTANCE RELAY MATHEMATICIAN DUALISM. International journal of scientific researchers (IJSR) INDEXING, 4(2), 107-110.
- 16. Мамадалиев, М. А. (2024). ЭЛЕКТРОЭНЕРГИЯ В СИСТЕМАХ ЭЛЕКТРОЭНЕРГЕТИКИ. International journal of scientific researchers (IJSR) INDEXING, 4(2), 75-78.
- 17. Yuldashev, B. R. (2024). DIGITAL RELAYS AND THEIR TECHNOLOGY. International journal of scientific researchers (IJSR) INDEXING, 4(2), 72-74.
- 18. Ibrohimjon oʻgʻli, T. R., Abdulboqi oʻgʻli, A. M., & Zaynabidin oʻg, X. M. B. (2024). ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА. International journal of scientific researchers (IJSR) INDEXING, 4(2), 9-12.
- 19. Zakrullayevna, Z. I., Ahmadaliyevich, M. M., Ugli, M. S. S., & Rahimjon, U. (2022). ELECTRIC DOWNLOAD DIAGRAMS AND SELECTION OF ELECTRIC ENGINE POWER. European International Journal of Multidisciplinary Research and Management Studies, 2(04), 33-37.
- 20. Абдухалилов, Д. К. (2024). CXEMЫ ИСПОЛЬЗОВАНИЯ ГЛУБИННЫХ СЕТЕЙ. International journal of scientific researchers (IJSR) INDEXING, 4(2), 111-115.