UMUMIY MA’LUMOTLARNI TAHLIL QILISH: TURLARI, JARAYONI, USULLARI, TEXNIKASI VA VOSITALARI
Keywords:
Ma’lumotlar, vizualizatsiya, ma’lumotlarni tahlil qilish, biznes, statistika.Abstract
Ma’lumotlarni tahlil qilish biznes qarorlarini qabul qilish uchun foydali ma’lumotlarni topish uchun ma’lumotlarni tozalash, o‘zgartirish va modellashtirish jarayoni sifatida tavsiflanadi. Ma’lumotlarni tahlil qilishning maqsadi ma’lumotlardan foydali ma’lumotlarni olish va ularni tahlil qilish asosida qaror qabul qilishdir. Kundalik hayotimizda har qanday qaror qabul qilganimizda, oxirgi marta nima bo‘lganligi yoki ushbu qarorni tanlash orqali nima sodir bo‘lishi haqida o‘ylashdir. Buning uchun biz o‘tmishimiz haqidagi xotiralarni yoki kelajagimiz haqidagi orzularni yig‘amiz. Demak, bu ma’lumotlarni tahlil qilishdir. Endi analitikning biznes maqsadlari uchun qiladigan ishi ma’lumotlar tahlili deb ataladi. Ushbu maqola ma’lumotlar tahliliga asoslangan, uning turlari, jarayoni, usullari, texnikasi va vositalarini o‘rganadi.
References
Sardar Mohkim Khan (26 January 2011). “DataMarket Expands Horizons: Adds 100 Million Time Series, 600 Million Facts”.
Tamara Munzner. "Process and Pitfalls in Writing Information Visualization Research Papers". www.cs.ubc.ca. Retrieved 9 April 2018.
Pavlopoulos, Georgios A.; Iacucci, Ernesto; Iliopoulos, Ioannis; Bagos, Pantelis (2013). Interpreting the Omics 'era' Data. Multimedia Services in Intelligent Environments. Smart Innovation, Systems and Technologies.
Benjamin B. Bederson and Ben Shneiderman (2003). The Craft of Information Visualization: Readings and Reflections, Morgan Kaufmann ISBN 1-55860-915-6.
Manuela Aparicio and Carlos J. Costa (November 2014). “Data visualization”. Communication Design Quarterly Review.
“Data Visualization for Human Perception”. The Interaction Design Foundation. Retrieved 2015-11-23.
Lucić V, Förster F, Baumeister W (2005). “Structural studies by electron tomography: from cells to molecules”. Annual Review of Biochemistry. 74: 833–65.
Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured Data. In OSDI, pages205–218, 2006.
Rajeev Gupta, Himanshu Gupta, and Mukesh Mohania, “Cloud Computing and Big Data Analytics: What Is New from Database s Perspective?” S. Srinivasa and V. Bhatnagar (Eds.): BDA 2012, LNCS 7678, pp. Springer-Verlag Berlin Heidelberg 42–61, 2012.
Curino, C., Jones, E. P. C., Popa, R. A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N.: Realtional Cloud: A Database-as-a-Service for the Cloud. In: Proceedings of Conference on Innovative Data Systems Research, CIDR-2011.
Alberto Ferandez, Sara del R, Victoria opez, Abdullah Bawakid, Maria J. del Jesus, Jose M. Benitez, and Francisco Herrera. “Big Data with Cloud Computing: an insight on the computingenvironment, MapReduce, and programming frameworks”. doi: 10.1002/widm.1134. WIREs Data Mining Knowl Discov, 4: 380–409, 2014.
Lu, Huang, Ting-tin Hu. “Research on Hadoop Cloud Computing Model and its Applications.” Hangzhou, China: 2012, pp. 59–63, 21-24 Oct. 2012.
Wie, Jiang, Ravi V. T, and Agrawal G. “A Map-Reduce System with an Alternate API for Multi-core Environments.” Melbourne, VIC: 2010, pp. 84-93, 17-20 May. 2010.
K, Chitharanjan, and Kala Karun A. “A review on hadoop - HDFS infrastructure exten-sions.” JeJu Island: 2013, pp. 132-137, 11-12 Apr. 2013.
F.C.P, Muhtaroglu, Demir S, Obali M, and Girgin C. “Business model canvas perspective on big data applications.” Big Data, 2013 IEEE International Conference, Silicon Valley, CA, Oct 6-9, p. 32–37, 2013.
Castelino, C., Gandhi, D., Narula, H. G., & Chokshi, N. H. (2014). Integration of Big Data and Cloud Computing.