UCH O‘LCHAMLI NILPOTENT LEYBNITS ALGEBRALARINING KVAZIDIFFERENSIALLASHLARI VA ULARNING XOSSALARI

https://doi.org/10.5281/zenodo.11198320

Authors

  • Musayev Sardor Xabibulla o’g’li,Ravshanov Diyorbek Ilg’or o’g’li Nuraliyev Suhrob Bahromovich Pirimberdiyeva Mavjuda Rahimberdi qizi Fan va texnologiyalar universiteti Aniq fanlar kafedrasi o’qituvchisi.,Fan va texnologiyalar universiteti Moliya va moliyaviy texnologiyalar fakulteti 2-bosqich sirtqi talabalari Author

Keywords:

Leybnits algebralari, differensiallash, kvazi-differensiallash, umumlashgan differensiallash, sentroid va kvazi-sentroidlar.

Abstract

Maqolada uch o‘lchamli nilpotent Leybnits algebralarining kvazi

differensiallashlari va ularning xossalari haqida olingan natijalar keltiriladi

References

Albeverio S., Ayupov Sh.A., Kudaybergenov K.K., Nurjanov B.O., Local derivations on

algebras of measurable operators. Comm. in Cont. Math., 2011, Vol. 13, No. 4, p. 643–657.

Ayupov Sh.A., Kudaybergenov K.K., Local derivations on finite-dimensional Lie

algebras. Linear Alg. and Appl., 2016, Vol. 493, p. 381–388.

Abdurasulov K., Kaygorodov I., Khudoyberdiyev A.: The algebraic and geometric

classification of nilpotent Leibniz algebras,

Abdurasulov, K., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic classification of

nilpotent Novikov algebras. Filomat 37(20), 6617–6664 (2023)

Abdurasulov K., Kaygorodov I., Khudoyberdiyev A.: The algebraic and geometric

classification of nilpotent Leibniz algebras, arXiv:2307.00289

Abdurasulov, K., Khudoyberdiyev, A., Ladra, M., Sattarov, A.: Pre-derivations and

description of nonstrongly nilpotent filiform Leibniz algebras. Commun Math 29(2), 187–213

(2021)

Ayupov, Sh., Khudoyberdiyev, A., Yusupov, B.: Local and 2-local derivations of

solvable Leibniz algebras. Internat. J. Algebra Comput. 30(6), 1185–1197 (2020)

Ayupov, Sh., Khudoyberdiyev, A., Shermatova, Z.: On complete Leibniz algebras.

Internat. J. Algebra Comput. 32(2), 265–288 (2022)

Musayev, S. H. o'g'li. (2024). KICHIK O'LCHAMLI LEYBNITS

ALGEBRALARINING KVAZI-DIFFERENSIYALASHLARI VA ULARNING XOSSALARI.

Educational research in universal sciences, 3(3), 112–119.

https://doi.org/10.5281/zenodo.10836664

Musayev S. X. NOL-FILIFORM LEYBNITS ALGEBRALARINING KVAZIDIFFERENSIALLASHLARI. Mathematics, mechanics and intellectual technologies tashkent-

227-228.

Musayev S.X. LEYBNITS ALGEBRALARINING KVAZIDIFFERENSIALLASHLARI VA ULARNING XOSSALARI. Operator algebralar, noassotsiativ

tuzilmalar va turdosh masalalar. Sentabr-2022. 118-120 betlar.

Musayev S. X. Elementary properties of centroid, quasicentroid and central derivations

of Leibniz algebras. ABSTRACTS OF COMMUNICATIONS: INTERNATIONAL

CONFERENCE LIMIT THEOREMS OF PROBABILITY THEORY AND MATHEMATICAL

STATISTICS. September 26-28, 2022 Tashkent, Uzbekistan

Downloads

Published

2024-06-02